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proposed about its function,
including a burial ground,

a healing site, and a place
for ancestor worship. One

of the more intriguing ideas
suggests that Stonehenge
was an observatory, allowing
measurements of some of
the quantities discussed

in this chapter, such as
position of objects in space
and time intervals between
repeating celestial events.
(Image copyright Stephen

Inglis. Used under license from
Shutterstock.com)

1.1 Standards of Length,
Mass, and Time

1.2 Modeling and
Alternative
Representations

1.3 Dimensional Analysis
1.4 Conversion of Units

15 Estimates and
Order-of-Magnitude
Calculations

16 Significant Figures

—a el 481"} Each chapter in this textbook will begin with a paragraph
related to a storyline that runs throughout the text. The storyline centers on you: an
inquisitive physics student. You could live anywhere in the world, but let's say you
live in southern California, where one of the authors lives. Most of your observations
will occur there, although you will take trips to other locations. As you go through
your everyday activities, you see physics in action all around you. In fact, you can't get
away from physics! As you observe phenomena at the beginning of each chapter,
you will ask yourself, “Why does that happen?” You might take measurements with
your smartphone. You might look for related videos on YouTube or photographs on
an image search site. You are lucky indeed because, in addition to those resources,
you have this textbook and the expertise of your instructor to help you understand
the exciting physics surrounding you. Let's look at your first observations as we begin
your storyline. You have just bought this textbook and have flipped through some of
its pages. You notice a page of conversions on the inside back cover. You notice in
the entries under “Length” the unit of a light-year. You say, “Wait a minute! (You will
say this often in the upcoming chapters.) How can a unit based on a year be a unit of

length?" As you look farther down the page, you see 1 kg = 2.2 |b (Ib is the abbrevia- \

tion for pound, Ib is from Latin /ibra pondo) under the heading “Some Approximations
Useful for Estimation Problems.” Noticing the “approximately equal” sign (=), you
wonder what the exact conversion is and look upward on the page to the heading
“Mass," since a kilogram is a unit of mass. The relation between kilograms and
pounds is not there! Why not? Your physics adventure has begun!

CONNECTIONS The second paragraph in each chapter will explain how
the material in the chapter connects to that in the previous chapter and/or future
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chapters. This feature will help you see that the textbook is not a collection of
unrelated chapters, but rather is a structure of understanding that we are building,
step by step. These paragraphs will provide a roadmap through the concepts and
principles as they are introduced in the text. They will justify why the material in
that chapter is presented at that time and help you to see the “big picture” of the
study of physics. In this first chapter, of course, we cannot connect to a previous
chapter. We will simply look ahead to the present chapter, in which we discuss
some preliminary concepts of measurement, units, modeling, and estimation that
we will need throughout all the chapters of the text.

EER Standards of Length, Mass, and Time

To describe natural phenomena, we must make measurements of various aspects
of nature. Each measurement is associated with a physical quantity, such as the
length of an object. The laws of physics are expressed as mathematical relation-
ships among physical quantities that we will introduce and discuss throughout the
book. In mechanics, the three fundamental quantities are length, mass, and time. All
other quantities in mechanics can be expressed in terms of these three.

If we are to report the results of a measurement to someone who wishes to
reproduce this measurement, a standard must be defined. For example, if someone
reports that a wall is 2 meters high and our standard unit of length is defined to be
I meter, we know that the height of the wall is twice our basic length unit. Whatever
is chosen as a standard must be readily accessible and must possess some property
that can be measured reliably. Measurement standards used by different people in
different places—throughout the Universe—must yield the same result. In addi-
tion, standards used for measurements must not change with time.

In 1960, an international committee established a set of standards for the fun-
damental quantities of science. It is called the SI (Systéme International), and its
fundamental units of length, mass, and time are the meter, kilogram, and second,
respectively. Other standards for SI fundamental units established by the commit-
tee are those for temperature (the kelvin), electric current (the ampere), luminous
intensity (the candela), and the amount of substance (the mole).

Length

We can identify length as the distance between two points in space. In 1120, the
king of England decreed that the standard of length in his country would be named
the yard and would be precisely equal to the distance from the tip of his nose to the
end of his outstretched arm. Similarly, the original standard for the foot adopted
by the French was the length of the royal foot of King Louis XIV. Neither of these
standards is constant in time; when a new king took the throne, length measure-
ments changed! The French standard prevailed until 1799, when the legal standard
of length in France became the meter (m), defined as one ten-millionth of the
distance from the equator to the North Pole along one particular longitudinal line
that passes through Paris. Notice that this value is an Earth-based standard that
does not satisfy the requirement that it can be used throughout the Universe.

Table 1.1 (page 4) lists approximate values of some measured lengths. You should
study this table as well as the next two tables and begin to generate an intuition for
what is meant by, for example, a length of 20 centimeters, a mass of 100 kilograms,
or a time interval of 3.2 X 107 seconds.

As recently as 1960, the length of the meter was defined as the distance between
two lines on a specific platinum-iridium bar stored under controlled conditions
in France. Current requirements of science and technology, however, necessitate
more accuracy than that with which the separation between the lines on the bar
can be determined. In the 1960s and 1970s, the meter was defined to be equal to

PITFALL PREVENTION 1.1

Reasonable Values Generating
intuition about typical values of
quantities when solving problems
is important because you must
think about your end result and
determine if it seems reasonable.
For example, if you are calculating
the mass of a housefly and arrive
at a value of 100 kg, this answer is
unreasonable and there is an error
somewhere.
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Figure 1.1 (a) International
Prototype of the Kilogram, an
accurate copy of the International
Standard Kilogram kept at Sévres,
France, is housed under a double
bell jar in a vault at the National
Institute of Standards and Tech-
nology. (b) A cesium fountain
atomic clock. The clock will
neither gain nor lose a second

in 20 million years.

Physics and Measurement

LEGIRSREE Approximate Values of Some Measured Lengths

Length (m)
Distance from the Earth to the most remote known quasar 2.7 X 10%
Distance from the Earth to the most remote normal galaxies 3 X 102
Distance from the Earth to the nearest large galaxy (Andromeda) 2 X 10
Distance from the Sun to the nearest star (Proxima Centauri) 4 X 106
One light-year 9.46 X 10
Mean orbit radius of the Earth about the Sun 1.50 x 101
Mean distance from the Earth to the Moon 3.84 x 10%
Distance from the equator to the North Pole 1.00 x 107
Mean radius of the Earth 6.37 X 10°
Typical altitude (above the surface) of a satellite orbiting the Earth 2 X 10°
Length of a football field 9.1 X 10
Length of a housefly 5 X107
Size of smallest dust particles ~107*
Size of cells of most living organisms ~ 1075
Diameter of a hydrogen atom ~ 10710
Diameter of an atomic nucleus = ]
Diameter of a proton ~ 10~®

1 650 763.73 wavelengths' of orange-red light emitted from a krypton-86 lamp. In
October 1983, however, the meter was redefined as the distance traveled by light
in vacuum during a time interval of 1/299 792 458 second. In effect, this latest
definition establishes that the speed of light in vacuum is precisely 299 792 458
meters per second. This definition of the meter is valid throughout the Universe
based on our assumption that light is the same everywhere. The speed of light also
allows us to define the light-year, as mentioned in the introductory storyline: the
distance that light travels through empty space in one year. Use this definition and
the speed of light to verify the length of a light-year in meters as given in Table 1.1.

Mass

We will find that the mass of an object is related to the amount of material that is
present in the object, or to how much that object resists changes in its motion. Mass
is an inherent property of an object and is independent of the object’s surround-
ings and of the method used to measure it. The SI fundamental unit of mass, the
kilogram (kg), is defined as the mass of a specific platinum—iridium alloy cylinder
kept at the International Bureau of Weights and Measures at Sévres, France. This
mass standard was established in 1887 and has not been changed since that time
because platinum-iridium is an unusually stable alloy. A duplicate of the Sévres
cylinder is kept at the National Institute of Standards and Technology (NIST) in
Gaithersburg, Maryland (Fig. 1.1a). Table 1.2 lists approximate values of the masses
of various objects.

In Chapter 5, we will discuss the difference between mass and weight. In anticipa-
tion of that discussion, let’s look again at the approximate equivalence mentioned
in the introductory storyline: 1 kg = 2.2 Ib. It would never be correct to claim that
a number of kilograms equals a number of pounds, because these units represent
different variables. A kilogram is a unit of mass, while a pound is a unit of weight.
That’s why an equality between kilograms and pounds is not given in the section of
conversions for mass on the inside back cover of the textbook.

'We will use the standard international notation for numbers with more than three digits, in which groups of three
digits are separated by spaces rather than commas. Therefore, 10 000 is the same as the common American notation
of 10,000. Similarly, 7 = 3.14159265 is written as 3.141 592 65.
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WY Approximate Values of
Some Time Intervals

SPEUEEEY Approximate

Masses of Various Objects

Mass (kg) Time Interval (s)
Observable Age of the Universe 4 x 107
Universe ~ 10%2 Age of the Earth 1.3 X 10"
Milky Way Average age of a college student 6.3 X 10%
galaxy ~ 1042 One year 32X IOZ
Sy 1.99 X 10% One day 8.6 X 10
24 One class period 3.0 X 10%
Earth SlpX 1029 Time interval between normal
Maon 73X 10 heartbeats 8 X 10
Shark - 10? Period of audible sound waves ~ 1072
Human ~ 10 Period of typical radio waves ~ 1076
Frog ~ 107 Period of vibration of an atom
Mosquito 1073 in a solid ~ 1078
Bacterium ~1X1071 Period of visible light waves ~ 1078
Hydrogen atom  1.67 X 107%7 Duration of a nuclear collision o= JOTR2
Electron 9.11 X 1073 Time interval for light to cross
a proton ~ 107
Time

Before 1967, the standard of time was defined in terms of the mean solar day. (A
solar day is the time interval between successive appearances of the Sun at the high-
est point it reaches in the sky each day.) The fundamental unit of a second (s) was
defined as (35)(35)(3;) of a mean solar day. This definition is based on the rotation
of one planet, the Earth. Therefore, this motion does not provide a time standard
that is universal.

In 1967, the second was redefined to take advantage of the high precision attain-
able in a device known as an atomic clock (Fig. 1.1b), which measures vibrations of
cesium atoms. One second is now defined as 9 192 631 770 times the period of
vibration of radiation from the cesium-133 atom.? Approximate values of time
intervals are presented in Table 1.3.

You should note that we will use the notations time and time interval differently. A
time is a description of an instant relative to a reference time. For example, ¢t = 10.0s
refers to an instant 10.0 s after the instant we have identified as ¢ = 0. As another
example, a Zime of 11:30 a.m. means an instant 11.5 hours after our reference time
of midnight. On the other hand, a time interval refers to duration: he required
30.0 minutes to finish the task. It is common to hear a “time of 30.0 minutes” in
this latter example, but we will be careful to refer to measurements of duration as
time intervals.

Units and Quantities In addition to SI, another system of units, the U.S. custom-
ary system, is still used in the United States despite acceptance of SI by the rest of the
world. In this system, the units of length, mass, and time are the foot (ft), slug, and
second, respectively. In this book, we shall use SI units because they are almost uni-
versally accepted in science and industry. We shall make some limited use of U.S.
customary units in the study of classical mechanics.

In addition to the fundamental SI units of meter, kilogram, and second, we can
also use other units, such as millimeters and nanoseconds, where the prefixes malli-
and nano- denote multipliers of the basic units based on various powers of ten.
Prefixes for the various powers of ten and their abbreviations are listed in Table 1.4
(page 6). For example, 107 m is equivalent to 1 millimeter (mm), and 10 m corre-
sponds to 1 kilometer (km). Likewise, 1 kilogram (kg) is 10° grams (g), and 1 mega
volt (MV) is 10° volts (V).

*Period is defined as the time interval needed for one complete vibration.
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Atable of the letters in the »
Greek alphabetis provided
on the back endpaper
of this book.

). 0= B8 Prefixes for Powers of Ten

Power Prefix Abbreviation Power Prefix Abbreviation
107 yocto y 10° kilo k
1072 zepto z 10° mega M
1078 atto a 109 giga G
10715 femto f 10'2 tera T
10712 pico p 101 peta P
1077 nano n 1018 exa E
1076 micro n 10 zetta Z
10°% milli m 10% yotta Y
1072 centi c
107! deci d

The variables length, mass, and time are examples of fundamental quantities. Most
other variables are derived quantities, those that can be expressed as a mathematical
combination of fundamental quantities. Common examples are area (a product of
two lengths) and speed (a ratio of a length to a time interval).

Another example of a derived quantity is density. The density p (Greek letter
rho) of any substance is defined as its mass per unit volume:

(1.1)

<|3

In terms of fundamental quantities, density is a ratio of a mass to a product of three
lengths. Aluminum, for example, has a density of 2.70 X 10 kg/m®, and iron has
a density of 7.86 X 10° kg/m®. An extreme difference in density can be imagined
by thinking about holding a 10-centimeter (cm) cube of Styrofoam in one hand
and a 10-cm cube of lead in the other. See Table 14.1 in Chapter 14 for densities of
several materials.

@UICK QUIZ 1.1 In a machine shop, two cams are produced, one of aluminum
and one of iron. Both cams have the same mass. Which cam is larger? (a) The
- aluminum cam is larger. (b) The iron cam is larger. (c) Both cams have the
o same size.

m Modeling and Alternative Representations

Most courses in general physics require the student to learn the skills of prob-
lem solving, and examinations usually include problems that test such skills. This
section describes some useful ideas that will enable you to enhance your under-
standing of physical concepts, increase your accuracy in solving problems, elim-
inate initial panic or lack of direction in approaching a problem, and organize
your work.

One of the primary problem-solving methods in physics is to form an appropri-
ate model of the problem. A model is a simplified substitute for the real problem
that allows us to solve the problem in a relatively simple way. As long as the predic-
tions of the model agree to our satisfaction with the actual behavior of the real sys-
tem, the model is valid. If the predictions do not agree, the model must be refined
or replaced with another model. The power of modeling is in its ability to reduce a
wide variety of very complex problems to a limited number of classes of problems
that can be approached in similar ways.

In science, a model is very different from, for example, an architect’s scale model
of a proposed building, which appears as a smaller version of what it represents.
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A scientific model is a theoretical construct and may have no visual similarity to the
physical problem. A simple application of modeling is presented in Example 1.1,
and we shall encounter many more examples of models as the text progresses.

Models are needed because the actual operation of the Universe is extremely
complicated. Suppose, for example, we are asked to solve a problem about the
Earth’s motion around the Sun. The Earth is very complicated, with many pro-
cesses occurring simultaneously. These processes include weather, seismic activity,
and ocean movements as well as the multitude of processes involving human activ-
ity. Trying to maintain knowledge and understanding of all these processes is an
impossible task.

The modeling approach recognizes that none of these processes affects the
motion of the Earth around the Sun to a measurable degree. Therefore, these
details are all ignored. In addition, as we shall find in Chapter 13, the size of the
Earth does not affect the gravitational force between the Earth and the Sun; only
the masses of the Earth and Sun and the distance between their centers determine
this force. In a simplified model, the Earth is imagined to be a particle, an object
with mass but zero size. This replacement of an extended object by a particle is
called the particle model, which is used extensively in physics. By analyzing the
motion of a particle with the mass of the Earth in orbit around the Sun, we find
that the predictions of the particle’s motion are in excellent agreement with the
actual motion of the Earth.

The two primary conditions for using the particle model are as follows:

* The size of the actual object is of no consequence in the analysis of its
motion.

 Any internal processes occurring in the object are of no consequence in the
analysis of its motion.

Both of these conditions are in action in modeling the Earth as a particle. Its radius
is not a factor in determining its motion, and internal processes such as thunder-
storms, earthquakes, and manufacturing processes can be ignored.

Four categories of models used in this book will help us understand and solve
physics problems. The first category is the geometric model. In this model, we form
a geometric construction that represents the real situation. We then set aside the
real problem and perform an analysis of the geometric construction. Consider a
popular problem in elementary trigonometry, as in the following example.

Finding the Height of a Tree .
You wish to find the height of a tree but cannot measure it directly. You stand 50.0 m from the tree and determine that a
line of sight from the ground to the top of the tree makes an angle of 25.0° with the ground. How tall is the tree?

Figure 1.2 shows the tree and a right triangle correspond-
ing to the information in the problem superimposed over it.
' (We assume that the tree is exactly perpendicular to a perfectly a
flat ground.) In the triangle, we know the length of the hori-
zontal leg and the angle between the hypotenuse and the hori-

: zontal leg. We can find the height of the tree by calculating the g‘
length of the vertical leg. We do so with the tangent function: i 25.0°
= ==
s | ©50.0 m {

ol = opposite side  }

ks adjacent side - 50.0 m Figure 1.2 (Example 1.1) The height of a tree can be found by
measuring the distance from the tree and the angle of sight to

h = (50.0m) tan 6 = (50.0 m) tan 25.0° = 23.3 m the top above the ground. This problem is a simple example of

geometrically modeling the actual problem.
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You may have solved a problem very similar to Example 1.1 but never thought
about the notion of modeling. From the modeling approach, however, once we
draw the triangle in Figure 1.2, the triangle is a geometric model of the real prob-
lem; it is a substitute. Until we reach the end of the problem, we do not imagine
the problem to be about a tree but to be about a triangle. We use trigonometry to
find the vertical leg of the triangle, leading to a value of 23.3 m. Because this leg
represents the height of the tree, we can now return to the original problem and
claim that the height of the tree is 23.3 m.

Other examples of geometric models include modeling the Earth as a perfect
sphere, a pizza as a perfect disk, a meter stick as a long rod with no thickness, and
an electric wire as a long, straight cylinder.

The particle model is an example of the second category of models, which we
will call simplification models. In a simplification model, details that are not sig-
nificant in determining the outcome of the problem are ignored. When we study
rotation in Chapter 10, objects will be modeled as rigid objects. All the molecules in
a rigid object maintain their exact positions with respect to one another. We adopt
this simplification model because a spinning rock is much easier to analyze than a
spinning block of gelatin, which is not a rigid object. Other simplification models
will assume that quantities such as friction forces are negligible, remain constant,
or are proportional to some power of the object’s speed. We will assume uniform
metal beams in Chapter 12, laminar flow of fluids in Chapter 14, massless springs in
Chapter 15, symmetric distributions of electric charge in Chapter 23, resistance-free
wires in Chapter 927, thin lenses in Chapter 34. These, and many more, are simplifi-
cation models.

The third category is that of analysis models, which are general types of prob-
lems that we have solved before. An important technique in problem solving is to
cast a new problem into a form similar to one we have already solved and which can
be used as a model. As we shall see, there are about two dozen analysis models that
can be used to solve most of the problems you will encounter. All of the analysis
models in classical physics will be based on four simplification models: particle, sys-
tem, rigid object, and wave. We will see our first analysis models in Chapter 2, where
we will discuss them in more detail.

The fourth category of models is structural models. These models are gener-
ally used to understand the behavior of a system that is far different in scale from
our macroscopic world—either much smaller or much larger—so that we cannot
interact with it directly. As an example, the notion of a hydrogen atom as an elec-
tron in a circular orbit around a proton is a structural model of the atom. The
ancient geocentric model of the Universe, in which the Earth is theorized to be at the
center of the Universe, is an example of a structural model for something larger in
scale than our macroscopic world.

Intimately related to the notion of modeling is that of forming alternative
representations of the problem that you are solving. A representation is a
method of viewing or presenting the information related to the problem. Sci-
entists must be able to communicate complex ideas to individuals without scien-
tific backgrounds. The best representation to use in conveying the information /
successfully will vary from one individual to the next. Some will be convinced
by a well-drawn graph, and others will require a picture. Physicists are often
persuaded to agree with a point of view by examining an equation, but non-
physicists may not be convinced by this mathematical representation of the
information.

A word problem, such as those at the ends of the chapters in this book, is one
representation of a problem. In the “real world” that you will enter after gradua-
tion, the initial representation of a problem may be just an existing situation, such
as the effects of climate change or a patient in danger of dying. You may have to
identify the important data and information, and then cast the situation yourself
into an equivalent word problem!
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Considering alternative representations can help you think about the informa-
tion in the problem in several different ways to help you understand and solve it.
Several types of representations can be of assistance in this endeavor:

¢ Mental representation. From the description of the problem, imagine a
scene that describes what is happening in the word problem, then let time
progress so that you understand the situation and can predict what changes
will occur in the situation. This step is critical in approaching every problem.

* Pictorial representation. Drawing a picture of the situation described in the
word problem can be of great assistance in understanding the problem. In
Example 1.1, the pictorial representation in Figure 1.2 allows us to identify
the triangle as a geometric model of the problem. In architecture, a blueprint
is a pictorial representation of a proposed building.

Generally, a pictorial representation describes what you would see if you
were observing the situation in the problem. For example, Figure 1.3 shows a
pictorial representation of a baseball player hitting a short pop foul. Any coor-
dinate axes included in your pictorial representation will be in two dimen-
sions: x and y axes. .

« Simplified pictorial representation. It is often useful to redraw the picto-
rial representation without complicating details by applying a simplifica-
tion model. This process is similar to the discussion of the particle model
described earlier. In a pictorial representation of the Earth in orbit around
the Sun, you might draw the Earth and the Sun as spheres, with possibly
some attempt to draw continents to identify which sphere is the Earth.

In the simplified pictorial representation, the Farth and the Sun would

be drawn simply as dots, representing particles, with appropriate labels.
Figure 1.4 shows a simplified pictorial representation corresponding to the
pictorial representation of the baseball trajectory in Figure 1.3. The nota-
tions v and v, refer to the components of the velocity vector for the baseball.
We will study vector components in Chapter 3. We shall use such simplified
pictorial representations throughout the book.

* Graphical representation. In some problems, drawing a graph that describes
the situation can be very helpful. In mechanics, for example, position—time
graphs can be of great assistance. Similarly, in thermodynamics, pressure—
volume graphs are essential to understanding. Figure 1.5 shows a graphical
representation of the position as a function of time of a block on the end of a
vertical spring as it oscillates up and down. Such a graph is helpful for under-
standing simple harmonic motion, which we study in Chapter 15.

A graphical representation is different from a pictorial representation,
which is also a two-dimensional display of information but whose axes, if
any, represent length coordinates. In a graphical representation, the axes may
represent any two related variables. For example, a graphical representation
may have axes for temperature and time. The graph in Figure 1.5 has axes
of vertical position y and time t. Therefore, in comparison to a pictorial rep-
resentation, a graphical representation is generally not something you would
see when observing the situation in the problem with your eyes.

* Tabular representation. It is sometimes helpful to organize the information
in tabular form to help make it clearer. For example, some students find that
making tables of known quantities and unknown quantities is helpful. The
periodic table of the elements is an extremely useful tabular representation
of information in chemistry and physics.

* Mathematical representation. The ultimate goal in solving a problem is
often the mathematical representation. You want to move from the infor-
mation contained in the word problem, through various representations of
the problem that allow you to understand what is happening, to one or more
equations that represent the situation in the problem and that can be solved
mathematically for the desired result.

Figure 1.3 A pictorial represen-
tation of a pop foul being hit by a
baseball player.

Figure 1.4 A simplified pictorial
representation for the situation
shown in Figure 1.3.

YA

Figure 1.5 A graphical represen-
tation of the position as a function
of time of a block hanging from a

spring and oscillating.
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PITFALL PREVENTION 1.2

Symbols for Quantities Some
quantities have a small number
of symbols that represent them.
For example, the symbol for time
is almost always . Other quanti-
ties might have various symbols
depending on the usage. Length
may be described with symbols
such as x, y, and z (for position);
r (for radius); a, b, and ¢ (for the
legs of a right triangle); € (for the
length of an object); d (for a dis-
tance); & (for a height); and

so forth.

EEJ Dimensional Analysis

In physics, the word dimension denotes the physical nature of a quantity. The dis-
tance between two points, for example, can be measured in feet, meters, or fur-
longs, which are all different units for expressing the dimension of length.

The symbols we use in this book to specify the dimensions of length, mass, and
time are L., M, and T, respective]y.3 We shall often use brackets [ ] to denote the
dimensions of a physical quantity. For example, the symbol we use for speed in this
book is v, and in our notation, the dimensions of speed are written [v] = L/T. As
another example, the dimensions of area A are [A] = L2 The dimensions and units
of area, volume, speed, and acceleration are listed in Table 1.5. The dimensions of
other quantities, such as force and energy, will be described as they are introduced
in the text.

In many situations, you may have to check a specific equation to see if it
matches your expectations. A useful procedure for doing that, called dimen-
sional analysis, can be used because dimensions can be treated as algebraic
quantities. For example, quantities can be added or subtracted only if they have
the same dimensions. Furthermore, the terms on both sides of an equation must
have the same dimensions. By following these simple rules, you can use dimen-
sional analysis to determine whether an expression has the correct form. Any
relationship can be correct only if the dimensions on both sides of the equation
are the same.

To illustrate this procedure, suppose you are interested in an equation for the
position x of a car at a time ¢if the car starts from rest at x = 0 and moves with con-
stant acceleration a. The correct expression for this situation is x = sai® as we show
in Chapter 2. The quantity x on the left side has the dimension of length. For the
equation to be dimensionally correct, the quantity on the right side must also have
the dimension of length. We can perform a dimensional check by substituting the
dimensions for acceleration, L/T? (Table 1.5), and time, T, into the equation. That
is, the dimensional form of the equation x = Tat®is

L=l @=L
Y o
The dimensions of time cancel as shown, leaving the dimension of length on the
right-hand side to match that on the left.
A more general procedure using dimensional analysis is to set up an expression
of the form

X oc (l”l"’

where n and m are exponents that must be determined and the symbol o indicates
a proportionality. This relationship is correct only if the dimensions of both sides
are the same. Because the dimension of the left side is length, the dimension of the
right side must also be length. That is,

[antvn] = ;= LITO

17-1:10= 15| Dimensions and Units of Four Derived Quantities

Quantity Area (A) Volume (V) Speed (v) Acceleration (a)
Dimensions L2 I.? L/T L/T?

SI units m? m? m/s m/s?

U.S. customary units ft? 7 ft/s ft/s?

3The dimensions of a quantity will be symbolized by a capitalized, nonitalic letter such as L or T. The algebraic symbol
for the quantity itself will be an italicized letter such as L for the length of an object or ¢ for time.

1.3 Dimensional Analysis

Because the dimensions of acceleration are L/T? and the dimension of time is T,
we have

(L/TQ)HT)H =1LIT" — (LnTm— ?n) s LIT()

The exponents of L and T must be the same on both sides of the equation. From
the exponents of L, we see immediately that n = 1. From the exponents of T, we see
that m — 2n = 0, which, once we substitute for n, gives us m = 2. Returning to our
original expression x « @"t", we conclude that x & at?.

(VIUICK QUIZ 1.2 True or False: Dimensional analysis can give you the numer-
ical value of constants of proportionality that may appear in an algebraic
» expression.

Analysis of an Equation

1

Show that the expression v = af, where v represents speed, a acceleration, and 7 an instant of time, is dimensionally

correct.
L
Identify the dimensions of v from Table 1.5: [v] = T
= : L L
Identify the dimensions of a from Table 1.5 and multiply [al] = e ¥ = T

by the dimensions of

Therefore, v = atis dimensionally correct because we have the same dimensions on both sides. (If the expression were given

as v = at?, it would be dimensionally incorrect. Try it and see!)

1 Analysis of a Power Law

Suppose we are told that the acceleration a of a particle moving with uniform speed vin a circle of radius ris proportional
to some power of 7, say 7", and some power of v, say v". Determine the values of » and m and write the simplest form of an

equation for the acceleration.

Write an expression for a with a dimensionless constant a= kr'v™
of proportionality k:

L L

m
Substitute the dimensions of a, 7, and v — =1L" (—) -

Tz T T

Equate the exponents of L and T so that the dimensional n+tm=1land m= 2

equation is balanced:

Solve the two equations for n: n= —1

it

v
Write the acceleration expression: a=k'v? = k—

LH+ m

In Section 4.4 on uniform circular motion, we show that k = 1 if a consistent set of units is used. The constant & would not

equal 1 if, for example, v were in km/h and you wanted @ in m/s%.
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PITFALL PREVENTION 1.3 m Conversion of Units

Always Include Units When per- ; 5 s 5
y 5 3 P Sometimes it is necessary to convert units from one measurement system to another
forming calculations with numer-

: calvalues: includéithe amitsfor or convert within a system (for example, from kilometers to meters). Conversion
every quantity and carry the units factors between SI and U.S. customary units of length are as follows:

h h th i lculation.
i e S 1609m =1.609km  1f = 0.3048m = 30.48 cm

Avoid the temptation to drop the : .
units early and then attach the 1m 39.37 in. = 3.281 ft lin. = 0.0254m = 2.54 cm (exactly)

expected units once you have an
answer. By including the units in

I
Il
Il

1 mile

I

A more complete list of conversion factors can be found in Appendix A.

every step, you can detect errors if lee dimensions, units can be treated as algebraic quantities that can can-
the units for the answer turn out cel each other. For example, suppose we wish to convert 15.0 in. to centimeters.
to be incorrect. Because 1 in. is defined as exactly 2.54 cm, we find that

Bodcm

15.0 in. = (15.0 iz )( :
1 i

) = 38.1 cm

where the ratio in parentheses is equal to 1. We express 1 as 2.54 cm/1 in. (rather
than 1in./2.54 cm) so that the unit “inch” in the denominator cancels with the unit
in the original quantity. The remaining unit is the centimeter, our desired result.

(®IUICK QUIZ 1.3 The distance between two cities is 100 mi. What is the number
. of kilometers between the two cities? (a) smaller than 100 (b) larger than 100
¢ (c) equal to 100

| Is He Speeding?

On an interstate highway in a rural region of Wyoming, a car is traveling at a speed of 38.0 m/s. Is the driver exceeding the
speed limit of 75.0 mi/h?

Convert meters to miles and seconds to hours:

(38.0 xi/%) ( i >( Ll ) (GOITﬁ ) = 85.0 mi/h

1609 mi /\ 1 min

- The driver is indeed exceeding the speed limit and should slow down.

| : | What if the driver were from outside the United States and is
familiar with speeds measured in kilometers per hour? What is the speed of the
| carin km/h?

Answer We can convert our final answer to the appropriate units:

1.609 km

(85.0 mi/h) ( Lot

) =137 km/h

Figure 1.6 shows an automobile speedometer displaying speeds in both mi/h and
km/h. Can you check the conversion we just performed using this photograph?

Figure 1.6 The speedometer of a vehicle
that shows speeds in both miles per hour
and kilometers per hour.

© Cengage

(1.5 | Estimates and Order-of-Magnitude Calculations

Suppose someone asks you the number of bits of data on a typical Blu-ray Disc. In
response, it is not generally expected that you would provide the exact number but
rather an estimate, which may be expressed in scientific notation. The estimate

1.6 Significant Figures 13

may be made even more approximate by expressing it as an order of magnitude, \
which is a power of 10 determined as follows: ‘

1. Express the number in scientific notation, with the multiplier of the power ’
of 10 between 1 and 10 and a unit.

2. If the multiplier is less than 3.162 (the square root of 10), the order of mag- i
nitude of the number is the power of 10 in the scientific notation. If the ‘
multiplier is greater than 3.162, the order of magnitude is one larger than i
the power of 10 in the scientific notation. \

[

We use the symbol ~ for “is on the order of.” Use the procedure above to verify
the orders of magnitude for the following lengths:

0.0086m ~ 1072 m 0.0021m ~ 107 m 720 m ~ 10* m

Usually, when an order-of-magnitude estimate is made, the results are reliable to
within about a factor of 10.

Inaccuracies caused by guessing too low for one number are often canceled w
by other guesses that are too high. You will find that with practice your guessti-
mates become better and better. Estimation problems can be fun to work because
you freely drop digits, venture reasonable approximations for unknown numbers,
make simplifying assumptions, and turn the question around into something you
can answer in your head or with minimal mathematical manipulation on paper.
Because of the simplicity of these types of calculations, they can be performed on a
small scrap of paper and are often called back-of-the-envelope calculations.

Breaths in a Lifetime

Estimate the number of breaths taken during an average human lifetime.

We start by guessing that the typical human lifetime is about 70 years. Think about the average number of breaths that a per-
son takes in 1 min. This number varies depending on whether the person is exercising, sleeping, angry, serene, and so forth.
To the nearest order of magnitude, we shall choose 10 breaths per minute as our estimate. (This estimate is certainly closer to
the true average value than an estimate of 1 breath per minute or 100 breaths per minute.)

400 days 25 I 60 min g
lyr( T )(ld&y)( T >—6><10 min

Find the approximate number of minutes in a 70-year number of minutes = (70 yr)(6 X 10° min/yr)
lifetime: =4 X 10" min

»

Find the approximate number of minutes in a year:

number of breaths = (10 breaths/min)(4 X 107 min)
= 4 X 10® breaths

Find the approximate number of breaths in a lifetime:

Therefore, a person takes on the order of 10? breaths in a lifetime. Notice how much simpler it is in the first calculation above
to multiply 400 X 25 than it is to work with the more accurate 365 X 24.

What if the average lifetime were estimated as 80 years instead of 70? Would that change our final estimate?

Answer We could claim that (80 yr)(6 X 10° min/yr) = 5 X 107 min, so our final estimate should be 5 X 10% breaths. This

| answer is still on the order of 10? breaths, so an order-of-magnitude estimate would be unchanged.

KK Ssignificant Figures

When certain quantities are measured, the measured values are known only to
within the limits of the experimental uncertainty. The value of this uncertainty
can depend on various factors, such as the quality of the apparatus, the skill of
the experimenter, and the number of measurements performed. The number of
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PITFALL PREVENTION 1.4
Read Carefully Notice that the
rule for addition and subtraction
is different from that for multipli-
cation and division. For addition
and subtraction, the important
consideration is the number of
decimal places, not the number of
significant figures.

Physics and Measurement

significant figures in a measurement can be used to express something about the
uncertainty. The number of significant figures is related to the number of numeri-
cal digits used to express the measurement, as we discuss below.

As an example of significant figures, suppose we are asked to measure the radius
of a Blu-ray Disc using a meterstick as a measuring instrument. Let us assume the
accuracy to which we can measure the radius of the disc is £0.1 cm. Because of
the uncertainty of £0.1 cm, if the radius is measured to be 6.0 cm, we can claim
only that its radius lies somewhere between 5.9 cm and 6.1 cm. In this case, we
say that the measured value of 6.0 cm has two significant figures. Note that ihe
significant figures include the first estimated digit. Therefore, we could write the radius as
(6.0 = 0.1) cm.

Zeros may or may not be significant figures. Those used to position the decimal
point in such numbers as 0.03 and 0.007 5 are not significant. Therefore, there are
one and two significant figures, respectively, in these two values. When the zeros
come after other digits, however, there is the possibility of misinterpretation. For
example, suppose the mass of an object is given as 1 500 g. This value is ambiguous
because we do not know whether the last two zeros are being used to locate the
decimal point or whether they represent significant figures in the measurement.
To remove this ambiguity, it is common to use scientific notation to indicate the
number of significant figures. In this case, we would express the mass as 1.5 X 10°g
if there are two significant figures in the measured value, 1.50 X 10° g if there are
three significant figures, and 1.500 X 10° g if there are four. The same rule holds
for numbers less than 1, so 2.3 X 107* has two significant figures (and therefore
could be written 0.000 23) and 2.30 X 10~* has three significant figures (and there-
fore written as 0.000 230).

In problem solving, we often combine quantities mathematically through mul-
tiplication, division, addition, subtraction, and so forth. When doing so, you must
make sure that the result has the appropriate number of significant figures. A good
rule of thumb to use in determining the number of significant figures that can be
claimed in a multiplication or a division is as follows:

When multiplying several quantities, the number of significant figures in the
final answer is the same as the number of significant figures in the quantity
having the smallest number of significant figures. The same rule applies to
division.

Let’s apply this rule to find the area of the Blu-ray Disc whose radius we mea-
sured above. Using the equation for the area of a circle,

A= mr?= (6.0 cm)? = 1.1 X 10% cm?

Ifyou perform this calculation on your calculator, you will likely see 113.097 335 5.
It should be clear that you don’t want to keep all of these digits, but you might
be tempted to report the result as 113 cm?. This result is not justified because it
has three significant figures, whereas the radius only has two. Therefore, we must
report the result with only two significant figures as shown above.

For addition and subtraction, you must consider the number of decimal places
when you are determining how many significant figures to report:

When numbers are added or subtracted, the number of decimal places in the
result should equal the smallest number of decimal places of any term in the
sum or difference.

As an example of this rule, consider the sum

23.2 + 5.174 = 28.4

Notice that we do not report the answer as 28.374 because the lowest number of dec-
imal places is one, for 23.2. Therefore, our answer must have only one decimal place.

The rule for addition and subtraction can often result in answers that have a
different number of significant figures than the quantities with which you start. For
example, consider these operations that satisfy the rule:

1.000 1 + 0.000 3 = 1.000 4
1.002 — 0.998 = 0.004

In the first example, the result has five significant figures even though one of
the terms, 0.000 3, has only one significant figure. Similarly, in the second calcu-
lation, the result has only one significant figure even though the numbers being
subtracted have four and three, respectively.

In this book, most of the numerical examples and end-of-chapter problems
will yield answers having three significant figures. When carrying out estima-
tion calculations, we shall typically work with a single significant figure.

If the number of significant figures in the result of a calculation must be reduced,
there is a general rule for rounding numbers: the last digit retained is increased by
1 if the last digit dropped is greater than 5. (For example, 1.346 becomes 1.35.)
If the last digit dropped is less than 5, the last digit retained remains as it is. (For
example, 1.343 becomes 1.34.) If the last digit dropped is equal to 5, the remaining
digit should be rounded to the nearest even number. (This rule helps avoid accu-
mulation of errors in long arithmetic processes.)

In a long calculation involving multiple steps, it is very important to delay the
rounding of numbers until you have the final result, in order to avoid error accumu-
Jation. Wait until you are ready to copy the final answer from your calculator before
rounding to the correct number of significant figures. In this book, we display
numerical values rounded off to two or three significant figures. This occasion-
ally makes some mathematical manipulations look odd or incorrect. For instance,
looking ahead to Example 3.5 on page 62, you will see the operation —17.7 km +
34.6 km = 17.0 km. This looks like an incorrect subtraction, but that is only because
we have rounded the numbers 17.7 km and 34.6 km for display. If all digits in these
two intermediate numbers are retained and the rounding is only performed on the
final number, the correct three-digit result of 17.0 km is obtained.

S Installing a Carpet

Summary 15

< Significantfigure guidelines
used in this book

PITFALL PREVENTION 1.5

Symbolic Solutions When solving
problems, it is very useful to per-
form the solution completely in
algebraic form and wait until the
very end to enter numerical values
into the final symbolic expression.
This method will save many calcu-
lator keystrokes, especially if some
quantities cancel so that you never
have to enter their values into
your calculator! In addition, you
will only need to round once, on
the final result.

A carpet is to be installed in a rectangular room whose length is measured to be 12.71 m and whose width is measured to

be 3.46 m. Find the area of the room.

If you multiply 12.71 m by 3.46 m on your calculator, you will see an answer of 43.976 6 m?. How many of these numbers should
| you claim? Our rule of thumb for multiplication tells us that you can claim only the number of significant figures in your

answer as are present in the measured quantity having the lowest number of significant figures. In this example, the lowest

Summary

> Definitions

The three fundamental physical quantities of mechanics are length,
mass, and time, which in the SI system have the units meter (m), volume:
kilogram (kg), and second (s), respectively. These fundamental

quantities cannot be defined in terms of more basic quantities.

<3

| number of significant figures is three in 3.46 m, so we should express our final answer as 44.0 m*.

The density of a substance is defined as its mass per unit

(1.1)

conlinued




16 Chapter 1 Physics and Measurement

» Concepts and Principles

The method of dimensional analysis is very powerful in solving phys-
ics problems. Dimensions can be treated as algebraic quantities. By
making estimates and performing order-of-magnitude calculations,
you should be able to approximate the answer to a problem when
there is not enough information available to specify an exact solution
completely.

Problem-solving skills and physical understanding can be improved
by modeling the problem and by constructing alternative represen-
tations of the problem. Models helpful in solving problems include
geometric, simplification, analysis, and structural models. Helpful
representations include the mental, pictorial, simplified pictorial,
graphical, tabular, and mathematical representations.

Think-Pair-Share

See the Preface for an explanation of the icons used in this problems set.
For additional assessment items for this section, go to ;"¢ WEBASSIGN
@ & From Cengage

1. A student is supplied with a stack of copy paper, ruler, com-

pass, scissors, and a sensitive balance. He cuts out various

shapes in various sizes, calculates their areas, measures

their masses, and prepares the graph of Figure TP1.1. (a)

Consider the fourth experimental point from the top. How

far is it vertically from the best-fit straight line? Express

your answer as a difference in vertical-axis coordinate. (b)

Express your answer as a percentage. (c) Calculate the slope

of the line. (d) State what the graph demonstrates, referring

to the shape of the graph and the results of parts (b) and

(c). (e) Describe whether this result should be expected the-
oretically. (f) Describe the physical meaning of the slope.

Dependence of mass on
area for paper shapes

Mass (g)

0 200 400 600
Area (cm?2)

@ Rectangles ESquares A Triangles
@ Circles Best fit

Figure TP1.1

When you compute a result from several measured
numbers, each of which has a certain accuracy, you
should give the result with the correct number of sig-
nificant figures.

When multiplying several quantities, the number of sig-
nificant figures in the final answer is the same as the
number of significant figures in the quantity having the
smallest number of significant figures. The same rule
applies to division.

When numbers are added or subtracted, the number
of decimal places in the result should equal the small-
est number of decimal places of any term in the sum or
difference.

2. BWHIUIRY Have each person in the group measure the

height of another person using a meter stick with metric
distances on one side and U.S. customary distances, such
as inches, on the other side. Record the height to the near-
est centimeter and to the nearest half-inch. For each per-
son, divide his or her height in centimeters by the height in
inches. Compare the results of this division for everyone in
your group. What can you say about the results?

Gather together a number of U.S. pennies, either
from your instructor or from the members of your group.
Divide up the pennies into two samples: (1) those with
dates of 1981 or earlier, and (2) those with dates of 1983
and later (exclude 1982 pennies from your sample). Find the
total mass of all the pennies in each sample. Then divide
each of these total masses by the number of pennies in its
corresponding sample, to find the average penny mass in
each sample. Discuss why the results are different for the
two samples.

4. LIRS Discuss in your group the process by which

you can obtain the best measurement of the thickness of
a single sheet of paper in Chapters 1-5 of this book. Per-
form that measurement and express it with an appropriate
number of significant figures and uncertainty. From that
measurement, predict the total thickness of the pages in
Volume 1 of this book (Chapters 1-21). After making your
prediction, measure the thickness of Volume 1. Is your mea-
surement within the range of your prediction and its associ-
ated uncertainty?

Problems

See the Preface for an explanation of the icons used in this problems sel.
For additional assessment items for this section, go lo 5~ & WEBASSIGN

From Cengage

Note: Consult the endpapers, appendices, and tables in the

text whenever necessary in solving problems. For this chapter,
Table 14.1 and Appendix B.3 may be particularly useful. Answers
to odd-numbered problems appear in the back of the book.

SECTION 1.1 Standards of Length, Mass, and Time

1.

B B

B

(a) Use information on the endpapers of this book to cal-
culate the average density of the Earth. (b) Where does the
value fit among those listed in Table 14.1 in Chapter 14?
Look up the density of a typical surface rock like granite in
another source and compare it with the density of the Earth.

A proton, which is the nucleus of a hydrogen atom, can be
modeled as a sphere with a diameter of 2.4 fm and a mass
of 1.67 X 1077 kg. (a) Determine the density of the proton.
(b) State how your answer to part (a) compares with the
density of osmium, given in Table 14.1 in Chapter 14.

Two spheres are cut from a certain uniform rock. One has
radius 4.50 cm. The mass of the other is five times greater.
Find its radius.

What mass of a material with density p is required to make
a hollow spherical shell having inner radius » and outer
radius r,?

You have been hired by the defense attorney as an expert wit-
ness in a lawsuit. The plaintiff is someone who just returned
from being a passenger on the first orbital space tourist flight.
Based on a travel brochure offered by the space travel com-
pany, the plaintiff expected to be able to see the Great Wall of
China from his orbital height of 200 km above the Earth’s sur-
face. He was unable to do so, and is now demanding that his
fare be refunded and to receive additional financial compen-
sation to cover his great disappointment. Construct the basis
for an argument for the defense that shows that his expecta-
tion of seeing the Great Wall from orbit was unreasonable. The
Wall is 7 m wide at its widest point and the normal visual acuity
of the human eye is 3 X 10~ rad. (Visual acuity is the smallest
subtended angle that an object can make at the eye and still be
recognized; the subtended angle in radians is the ratio of the
width of an object to the distance of the object from your eyes.)

SECTION 1.2 Modeling and Alternative Representations

6.

A surveyor measures the distance across a straight river by
the following method (Fig. P1.6). Starting directly across
from a tree on the opposite bank, she walks d = 100 m
along the riverbank to establish a baseline. Then she sights
across to the tree. The angle from her baseline to the tree is
6 = 35.0°. How wide is the river?

Figure P1.6

%

Problems 17

A crystalline solid consists of atoms stacked up in a repeat-
ing lattice structure. Consider a crystal as shown in Fig-
ure P1.7a. The atoms reside at the corners of cubes of side
L = 0.200 nm. One piece of evidence for the regular
arrangement of atoms comes from the flat surfaces along
which a crystal separates, or cleaves, when it is broken. Sup-
pose this crystal cleaves along a face diagonal as shown in
Figure P1.7b. Calculate the spacing d between two adjacent
atomic planes that separate when the crystal cleaves.

Figure P1.7

SECTION 1.3 Dimensional Analysis

8.

The position of a particle moving under uniform accelera-
tion is some function of time and the acceleration. Suppose
we write this position as x = ka”t", where k is a dimension-
less constant. Show by dimensional analysis that this expres-
sion is satisfied if m = 1 and » = 2. Can this analysis give the
value of k?

Which of the following equations are dimensionally cor-
rect? (a) U=y + ax (b) y= (2 m) cos (kx), where k = 2 m!

(a) Assume the equation x = At + Bt describes the motion
of a particular object, with x having the dimension of length
and ¢ having the dimension of time. Determine the dimen-
sions of the constants A and B. (b) Determine the dimen-
sions of the derivative dx/dt = 3A#* + B.

v

SECTION 1.4 Conversion of Units

11.
(V|

12.

A solid piece of lead has a mass of 23.94 g and a volume of
2.10 cm®. From these data, calculate the density of lead in SI
units (kilograms per cubic meter).

Why is the following situation impossible? A student’s dormi-
tory room measures 3.8 m by 3.6 m, and its ceiling is 2.5 m
high. After the student completes his physics course, he
displays his dedication by completely wallpapering the
walls of the room with the pages from his copy of volume 1
(Chapters 1-21) of this textbook. He even covers the door
and window.

One cubic meter (1.00 m?) of aluminum has a mass of
2.70 X 10°kg, and the same volume of iron has a mass of
7.86 X 10% kg. Find the radius of a solid aluminum sphere
that will balance a solid iron sphere of radius 2.00 cm on an
equal-arm balance.
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Let p,, represent the density of aluminum and p that of iron.
Find the radius of a solid aluminum sphere that balances a
solid iron sphere of radius 7;,. on an equal-arm balance.

-
»

p—
(<2

One gallon of paint (volume = 3.78 X 107% m?) covers an
area of 25.0 m?. What is the thickness of the fresh paint on
the wall?

B

16. An auditorium measures 40.0 m X 20.0 m X 12.0 m. The

density of air is 1.20 kg/m”. What are (a) the volume of the
room in cubic feet and (b) the weight of air in the room in
pounds?

SECTION 1.5 Estimates and Order-of-Magnitude Calculations

Note: In your solutions to Problems 17 and 18, state the quanti-
ties you measure or estimate and the values you take for them.

17. (a) Compute the order of magnitude of the mass of a bath-
tub half full of water. (b) Compute the order of magnitude
of the mass of a bathtub half full of copper coins.

18. To an order of magnitude, how many piano tuners reside
in New York City? The physicist Enrico Fermi was famous
for asking questions like this one on oral Ph.D. qualifying
examinations.

19. Your roommate is playing a video game from the latest

[ Star Wars movie while you are studying physics. Distracted
by the noise, you go to see what is on the screen. The game
involves trying to fly a spacecraft through a crowded field of
asteroids in the asteroid belt around the Sun. You say to him,
“Do you know that the game you are playing is very unrealistic?
The asteroid belt is not that crowded and you don’t have to
maneuver through it like that!” Distracted by your statement,
he accidentally allows his spacecraft to strike an asteroid, just
missing the high score. He turns to you in disgust and says,
“Yeah, prove it.” You say, “Okay, I've learned recently that the
highest concentration of asteroids is in a doughnut-shaped
region between the Kirkwood gaps at radii of 2.06 AU and
3.27 AU from the Sun. There are an estimated 10”asteroids of
radius 100 m or larger, like those in your video game, in this
region . . .” Finish your argument with a calculation to show
that the number of asteroids in the space near a spacecraft is
tiny. (An astronomical unit—AU—is the mean distance of the
Earth from the Sun: 1 AU = 1.496 X 10" m.)

SECTION 1.6 Significant Figures

Note: Appendix B.8 on propagation of uncertainty may be
useful in solving some problems in this section.

20. How many significant figures are in the following numbers?
(a) 78.9 = 0.2 (b) 3.788 X 107 (c) 2.46 X 107° (d) 0.005 3

21. The tropical year, the time interval from one vernal equinox
to the next vernal equinox, is the basis for our calendar. It
contains 365.242 199 days. Find the number of seconds in a
tropical year.

Note: The next seven problems call on mathematical skills from
your prior education that will be useful throughout this course.

22. Review. The average density of the planet Uranus is 1.27 X
10* kg/m?®. The ratio of the mass of Neptune to that of
Uranus is 1.19. The ratio of the radius of Neptune to that
of Uranus is 0.969. Find the average density of Neptune.

23.

24.

25.

26.

Review. In a community college parking lot, the number of
ordinary cars is larger than the number of sport utility vehi-
cles by 94.7%. The difference between the number of cars
and the number of SUVs is 18. Find the number of SUVs in
the lot.

Review. Find every angle 6 between 0 and 360° for which the
ratio of sin 6 to cos 6 is —3.00.

Review. The ratio of the number of sparrows visiting a bird
feeder to the number of more interesting birds is 2.25. On
a morning when altogether 91 birds visit the feeder, what is
the number of sparrows?

Review. Prove that one solution of the equation
2.00x* — 3.00x* + 5.00x = 70.0
isx = —2.22.
Review. From the set of equations
r=3q
pr=gs
3+ 5g5* = 5qt”

involving the unknowns p, ¢, % 5, and ¢, find the value of the
ratio of L to .

. Review. Figure P1.28 shows students studying the ther-

mal conduction of energy into cylindrical blocks of ice. As
we will see in Chapter 19, this process is described by the
equation

Q kwd(T,—T)

At 4L

For experimental control, in one set of trials all quantities
except d and At are constant. (a) If d is made three times
larger, does the equation predict that At will get larger or
get smaller? By what factor? (b) What pattern of propor-
tionality of Az to d does the equation predict? (c) To display
this proportionality as a straight line on a graph, what quan-
tities should you plot on the horizontal and vertical axes?
(d) What expression represents the theoretical slope of
this graph?

Alexandra Heder

Figure P1.28

ADDITIONAL PROBLEMS

29.

In a situation in which data are known to three significant
digits, we write 6.379 m = 6.38 m and 6.374 m = 6.37 m.
When a number ends in 5, we arbitrarily choose to write
6.375 m = 6.38 m. We could equally well write 6.376 m =
6.37 m, “rounding down” instead of “rounding up,” because

31.

32.

33.

34.

we would change the number 6.375 by equal increments in
both cases. Now consider an order-of-magnitude estimate, in
which factors of change rather than increments are impor-
tant. We write 500 m ~ 10° m because 500 differs from 100
by a factor of 5 while it differs from 1 000 by only a factor of
2. We write 437 m ~ 10° m and 305 m ~ 10®> m. What dis-
tance differs from 100 m and from 1 000 m by equal factors
so that we could equally well choose to represent its order of
magnitude as ~ 10°m or as ~ 10° m?

(a) What is the order of magnitude of the number of micro
organisms in the human intestinal tract? A typical bacterial
length scale is 107% m. Estimate the intestinal volume and
assume 1% of it is occupied by bacteria. (b) Does the num-
ber of bacteria suggest whether the bacteria are beneficial,
dangerous, or neutral for the human body? What functions
could they serve?

The distance from the Sun to the nearest star is about 4 X
10" m. The Milky Way galaxy (Fig. P1.31) is roughly a disk
of diameter 10*' m and thickness ~ 10" m. Find the order of
magnitude of the number of stars in the Milky Way. Assume
the distance between the Sun and our nearest neighbor
is typical.

NASA

Figure P1.31 The Milky Way galaxy.

Why is the following situation impossible? In an effort to boost
interest in a television game show, each weekly winner is
offered an additional $1 million bonus prize if he or she
can personally count out that exact amount from a supply of
one-dollar bills. The winner must do this task under super-
vision by television show executives and within one 40-hour
work week. To the dismay of the show’s producers, most con-
testants succeed at the challenge.

Bacteria and other prokaryotes are found deep under-
ground, in water, and in the air. One micron (107° m) is a
typical length scale associated with these microbes. (a) Esti-
mate the total number of bacteria and other prokaryotes on
the Earth. (b) Estimate the total mass of all such microbes.

A spherical shell has an outside radius of 2.60 cm and an
inside radius of a. The shell wall has uniform thickness and

35.

36.

38.
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is made of a material with density 4.70 g/cm®. The space
inside the shell is filled with a liquid having a density of
1.23 g/cm®. (a) Find the mass m of the sphere, including its
contents, as a function of a. (b) For what value of the vari-
able a does m have its maximum possible value? (c) What
is this maximum mass? (d) Explain whether the value from
part (c) agrees with the result of a direct calculation of the
mass of a solid sphere of uniform density made of the same
material as the shell. (¢) What If? Would the answer to part
(a) change if the inner wall were not concentric with the
outer wall?

Air is blown into a spherical balloon so that, when its radius
is 6.50 cm, its radius is increasing at the rate 0.900 cm/s.
(a) Find the rate at which the volume of the balloon is
increasing. (b) If this volume flow rate of air entering the
balloon is constant, at what rate will the radius be increas-
ing when the radius is 13.0 cm? (c) Explain physically why
the answer to part (b) is larger or smaller than 0.9 cm/s, if
it is different.

In physics, it is important to use mathematical approxima-
tions. (a) Demonstrate that for small angles (< 20°)

o'

180°

tana = sina =~ a =

where « is in radians and &' is in degrees. (b) Use a calcula-
tor to find the largest angle for which tan @ may be approx-
imated by a with an error less than 10.0%.

The consumption of natural gas by a company satisfies the
empirical equation V = 1.50¢ + 0.008 00¢2, where Vis the
volume of gas in millions of cubic feet and ¢ is the time in
months. Express this equation in units of cubic feet and sec-
onds. Assume a month is 30.0 days.

A woman wishing to know the height of a mountain mea-
sures the angle of elevation of the mountaintop as 12.0°
After walking 1.00 km closer to the mountain on level
ground, she finds the angle to be 14.0°. (a) Draw a picture
of the problem, neglecting the height of the woman’s eyes
above the ground. Hint: Use two triangles. (b) Using the
symbol y to represent the mountain height and the symbol x
to represent the woman'’s original distance from the moun-
tain, label the picture. (c) Using the labeled picture, write
two trigonometric equations relating the two selected vari-
ables. (d) Find the height y.

CHALLENGE PROBLEM

39.

A woman stands at a horizontal distance x from a mountain
and measures the angle of elevation of the mountaintop
above the horizontal as 6. After walking a distance d closer
to the mountain on level ground, she finds the angle to be
¢. Find a general equation for the height y of the mountain
in terms of d, ¢, and 0, neglecting the height of her eyes
above the ground.
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The introductory storyline involves a long, straight
road like this one, where the power poles are
equally spaced. (John Arehart/Shutterstock.com)

3 e )24 8,'13 You are a passenger in a car being driven by a friend
down a straight road. You notice that the telephone poles, streetlight poles, or
electric power poles on the side of the road are located at equal distances from
each other. You pull out your smartphone and use it as a stopwatch to measure
the time intervals required for you to pass between adjacent pairs of poles.
When your friend tells you that the car is moving at a fixed speed, you notice that
all of these time intervals are the same. Now, the driver begins to slow down for
a traffic light. You again measure the time intervals and find that each one is lon-
ger than the one before. After the car pulls away from the traffic light and speeds

up, the time intervals between poles become shorter. Does this behavior make I
sense? When the car is moving at a constant speed again, you use the time inter-
val between poles and the driving speed reported by your friend to calculate the
distance between the poles. You excitedly tell your friend to pull over so you can
pace out the distance between the poles. How accurate was your calculation?

CONNECTIONS We begin our study of physics with the topic of kinematics.
In this broad topic, we generally investigate motion: the motion of objects without
regard for interactions with the environment that influence the motion. Motion is
what many of the early scientists studied. Early astronomers in Greece, China,

the Middle East, and Central America observed the motion of objects in the night
sky. Galileo Galilei studied the motion of objects rolling down inclined planes. Isaac
Newton pondered the nature of falling objects. From everyday experience, we
recognize that motion of an object represents a continuous change in the object’s

'A number of specialized smartphone apps can be downloaded and used to make numerical measurements, such as
speed and acceleration. In our storylines, however, we will restrict our smartphone use mostly to apps that are stan-
dard on the phone as purchased.

position. In this chapter, we will analyze the motion of an object along a straight

line, like the car in the storyline. We will use measurements of length and time as
described in Chapter 1 to quantify the motion. An object moving vertically and sub-
ject to gravity is an important application of one-dimensional motion, and will also be
studied in this chapter. Remember our discussion of making models for physical situ-
ations in Section 1.2. In our study, we use the simplification model mentioned in that
section and called the particle model, and describe the moving object as a particle
regardless of its size. In general, a particle is a point-like object, that is, an object that
has mass but is of infinitesimal size. In Section 1.2, we discussed the fact that the
motion of the Earth around the Sun can be treated as if the Earth were a particle. We
will return to this model for the Earth when we study planetary orbits in Chapter 13.
As an example on a much smaller scale, it is possible to explain the pressure exerted
by a gas on the walls of a container by treating the gas molecules as particles,
without regard for the internal structure of the molecules; we will see this analysis

in Chapter 20. For now, let us apply the particle model to a wide variety of moving
objects in this chapter. An understanding of motion will be essential throughout the
rest of this book: the motion of planets in Chapter 13 on gravity, the motion of elec-
trons in electric circuits in Chapter 26, the motion of light waves in Chapter 34 on
optics, the motion of quantum particles tunneling through barriers in Chapter 40.

FXB Position, Velocity, and Speed of a Particle

A particle’s position x is the location of the particle with respect to a chosen reference
point that we can consider to be the origin of a coordinate system. The motion of a
particle is completely known if the particle’s position in space is known at all times.

Consider a car moving back and forth along the xaxis as in Figure 2.1a (page 22).
The numbers under the horizontal line are position markers for the car, similar to
the equally spaced poles in the introductory storyline. When we begin collecting
position data, the car is 30 m to the right of the reference position x = 0. We will
use the particle model by identifying some point on the car, perhaps the front door
handle, as a particle representing the entire car.

We start our clock, and once every 10 s we note the car’s position. As you can see
from Table 2.1, the car moves to the right (which we have defined as the positive
direction) during the first 10 s of motion, from position ® to position ®. After ®),
the position values begin to decrease, suggesting the car is backing up from position
® through position ®. In fact, at ®, 30 s after we start measuring, the car is at the
orlgm of coordinates (see Fig. 2.1a). It continues moving to the left and is more than
50 m to the left of x = 0 when we stop recording information after our sixth data
point. A graphical representation of this information is presented in Figure 2.1b.
Such a plot is called a position—time graph.

Notice the alternative representations of information, as discussed in Section 1.2,
that we have used for the motion of the car. Figure 2.1a is a pictorial representation,
whereas Figure 2.1b is a graphical representation. Table 2.1 is a tabular representa-
tion of the same information. The ultimate goal, as mentioned in Section 1.2, is a
mathematical representation, which can be analyzed to solve for some requested
piece of information.

In the introductory storyline, you observed the change in the position of your
car relative to the power poles. The displacement Ax of a particle is defined as
its change in position in some time interval. As the particle moves from an initial
position x, to a final position x,, its displacement is given by

Ax= X = %, (2.1)
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Figure 2.2 On this basketball
court, players run back and forth
for the entire game. The distance
that the players run over the
duration of the game is nonzero.
The displacement of the players
over the duration of the game is
approximately zero because they
keep returning to the same point
over and over again.

Figure 2.1 A car moves back and forth along a straight line. Because we are interested only in the
car’s translational motion, we can model it as a particle. Several representations of the information
about the motion of the car can be used. Table 2.1 is a tabular representation of the information.

(a) A pictorial representation of the motion of the car. (b) A graphical representation (position—time
graph) of the motion of the car.

We use the capital Greek letter delta (A) to denote the change in a quantity. From
this definition, we see that Ax is positive if x,is greater than x; and negative if X is
less than x,. Given the data in Table 2.1, we can easily determine the displacement
of the car for various time intervals.

It is very important to recognize the difference between displacement and dis-
tance traveled. Distance is the length of a path followed by a particle. Consider, for
example, the basketball players in Figure 2.2. If a player runs from his own team’s
basket down the court to the other team’s basket and then returns to his own bas-
ket, the displacement of the player during this time interval is zero because he ended
up at the same point as he started: x, = x,, so Ax = 0. During this time interval,
however, he moved through a distance of twice the length of the basketball court.
Distance is always represented as a positive number, whereas displacement can be
either positive or negative.

Displacement is an example of a vector quantity. Many other physical quanti-
ties, including position, velocity, and acceleration, also are vectors. In general, a
vector quantity requires the specification of both direction and magnitude. For
example, in the case of the car in Figure 2.1, by how much did the position of the
car change (magnitude) and in what direction—forward or backward? By contrast,
a scalar quantity has a numerical value and no direction. Distance is a scalar: how
far did the car move, as measured by its odometer, in a certain time interval? In this
chapter, we use positive (+) and negative (—) signs to indicate vector direction. For
example, for horizontal motion let us arbitrarily specify to the right as being the
positive direction. It follows that any object always moving to the right undergoes
a positive displacement Ax > 0, and any object moving to the left undergoes a neg-
ative displacement so that Ax < 0. We shall treat vector quantities in greater detail
in Chapter 3.

One very important point has not yet been mentioned. Notice that the data in
Table 2.1 result only in the six data points in the graph in Figure 2.1b. Therefore,
the motion of the particle is not completely known because we don’t know its posi-
tion at all times. The smooth curve drawn through the six points in the graph is
only a possibility of the actual motion of the car. We only have information about six

o
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instants of time; we have no idea what happened between the data points. The smooth
curve is a guess as to what happened, but keep in mind that it is only a guess. If
the smooth curve does represent the actual motion of the car, the graph contains
complete information about the entire 50-s interval during which we watch the
car move.

)UICK QUIZ 2.1 Which of the following choices best describes what can be

* determined exactly from Table 2.1 and Figure 2.1 for the entire 50-s interval?
(a) The distance the car moved. (b) The displacement of the car. (c) Both (a) and
5 (b). (d) Neither (a) nor (b).

It is much easier to see changes in position from the graph than from a verbal
description or even a table of numbers. For example, it is clear that the car covers
more ground during the middle of the 50-s interval than at the end. Between posi-
tions © and ®, the car changes position by almost 40 m, but during the last 10 s,
between positions ® and ®, it changes position by less than half that much. A com-
mon way of comparing these different motions is to divide the displacement Ax that
occurs between two clock readings by the value of that particular time interval At.
The result turns out to be a very useful ratio, one that we shall use many times. This
ratio has been given a special name: the average velocity. The average velocity v, of
a particle is defined as the particle’s displacement Ax divided by the time interval
At during which that displacement occurs:

Ax
= — 2.2)
Ux.avg At (

where the subscript x indicates motion along the x axis. From this definition we see
that average velocity has dimensions of length divided by time (L/T), or meters per
second in SI units.

The average velocity of a particle moving in one dimension can be positive or
negative, depending on the sign of the displacement. (The time interval Atis always
positive.) If the coordinate of the particle increases in time (that is, if X, > %), Ax
is positive and I Ax/At is positive. This case corresponds to a particle mov-
ing in the positive x direction, that is, toward larger values of x. If the coordinate
decreases in time (that is, if xl.< x;), Axis negative and hence - is negative. This
case corresponds to a particle moving in the negative x direction.

We can interpret average velocity geometrically by drawing a straight line
between any two points on the position—-time graph in Figure 2.1b. This line
forms the hypotenuse of a right triangle of height Ax and base At. The slope of
this/line is the ratio Ax/A¢, which is what we have defined as average velocity in
Equation 2.2. For example, the line between positions @ and ® in Figure 2.1b
has a slope equal to the average velocity of the car between those two times,
(52m — 30 m)/(10s — 0) = 2.2 m/s.

In everyday usage, the terms speed and wvelocity are interchangeable. In physics,
however, there is a clear distinction between these two quantities. Consider a mar-
athon runner who runs a distance d of more than 40 km and yet ends up at her
starting point. Her total displacement is zero, so her average velocity is zero! None-
theless, we need to be able to quantify how fast she was running. A slightly different
ratio accomplishes that for us. The average speed Ui of a particle, a scalar quan-
tity, is defined as the total distance d traveled divided by the total time interval
required to travel that distance:

Ll
Cag — Ay

(2.3)

The SI unit of average speed is the same as the unit of average velocity: meters
per second. Unlike average velocity, however, average speed has no direction and

< Average velocity

< Average speed
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PITFALL PREVENTION 2.1

Average Speed and Average
Velocity The magnitude of the
average velocity is not the average
speed. For example, consider

the marathon runner discussed
before Equation 2.3. The mag-
nitude of her average velocity

is zero, but her average speed is
clearly not zero.

is always expressed as a positive number. Notice the clear distinction between
the definitions of average velocity and average speed: average velocity (Eq. 2.2) is
the displacement divided by the time interval, whereas average speed (Eq. 2.3) is the
distance divided by the time interval.

Knowledge of the average velocity or average speed of a particle does not provide
information about the details of the trip. For example, suppose it takes you 45.0 s
to travel 100 m down a long, straight hallway toward your departure gate at an
airport. At the 100-m mark, you realize you missed the restroom, and you return
back 25.0 m along the same hallway, taking 10.0 s to make the return trip. The
magnitude of your average velocityis +75.0 m/55.0 s = +1.36 m/s. The average speed
for your trip is 125 m/55.0 s = 2.27 m/s. You may have traveled at various speeds
during the walk and, of course, you changed direction. Neither average velocity nor
average speed provides information about these details.

(MUICK QUIZ 2.2 Under which of the following conditions is the magnitude of
- the average velocity of a particle moving in one dimension smaller than the aver-
age speed over some time interval? (a) A particle moves in the +x direction with-
out reversing. (b) A particle moves in the —x direction without reversing. (c) A
particle moves in the +x direction and then reverses the direction of its motion.
o (d) There are no conditions for which this is true.

Calculating the Average Velocity and Speed

Find the displacement, average velocity, and average speed of the car in Figure 2.1a between positions ® and ®.

Consult Figure 2.1 to form a mental image of the car and its motion. We model the car as a particle. From the position-time
graph given in Figure 2.1b, notice that x5 = 30 m at {3y = 0 s and that xg = =53 m at {5y = 50s.

Use Equation 2.1 to find the displacement of the car:

Ax=x®—x®:—53m—30m= —83 m

| This result means that the car ends up 83 m in the negative direction (to the left, in this case) from where it started. This
number has the correct units and is of the same order of magnitude as the supplied data. A quick look at Figure 2.1a indicates

that it is the correct answer.

Use Equation 2.2 to find the car’s average velocity:

Yo T Y@
Yoo, =
xavg [@ _ t®
—53m—-—30m —83m
= = = -17
505 — 05 50's 8

We cannot unambiguously find the average speed of the car from the data in Table 2.1 because we do not have information
| about the positions of the car between the data points. If we adopt the assumption that the details of the car’s position are

| described by the curve in Figure 2.1b, the distance traveled is 22 m (from ® to ®) plus 105 m (from ® to ®), for a total of 127 m.

. ' , 127 m
Use Equation 2.3 to find the car’s average speed: U™ 50 = 2.5m/s
Notice that the average speed is positive, as it must be. Suppose the red-brown curve in Figure 2.1b were different so that
between 0 s and 10 s it went from ® up to 100 m and then came back down to ®. The average speed of the car would change

because the distance is different, but the average velocity would not change.

F¥] Instantaneous Velocity and Speed

Often we need to know the velocity of a particle at a particular instant in time /
rather than the average velocity over a finite time interval Az In other words, you
would like to be able to specify your velocity just as precisely as you can specify your
position by noting what is happening at a specific clock reading, that is, at some
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The blue line between
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0

Figure 2.3 (a) Graph representing the motion of the car in Figure 2.1. (b) An enlargement of the
upper-left-hand corner of the graph.

specific instant. What does it mean to talk about how quickly something is moving
if we “freeze time” and talk only about an individual instant? If the time interval
has a value of zero, the displacement of the object is also zero, so the average veloc-
ity from Equation 2.2 would seem to be 0/0. How do we evaluate that ratio? In the
late 1600s, with the invention of calculus, scientists began to understand how to
answer that question and describe an object’s motion at any moment in time.

To see how that is done, consider Figure 2.3a, which is a reproduction of the
graph in Figure 2.1b. What is the particle’s velocity at ¢ = 0? We have already dis-
cussed the average velocity for the interval during which the car moved from posi-
tion ® to position ® (given by the slope of the blue line) and for the interval dur-
ing which it moved from ® to ® (represented by the slope of the longer blue line
and calculated in Example 2.1). The car starts out by moving to the right, which we
defined to be the positive direction. Therefore, being positive, the value of the aver-
age velocity during the interval from ® to ® is more representative of the initial
velocity than is the value of the average velocity during the interval from ® to ®,
which we determined to be negative in Example 2.1. Now let us focus on the short
blue line and imagine sliding point ® to the left along the curve, toward point ®,
as in Figure 2.3b. The line between the points becomes steeper and steeper, and as
the two points become extremely close together, the line becomes a tangent line to
the curve, indicated by the green line in Figure 2.3b. The slope of this tangent line
represents the velocity of the car at point ®. What we have done is determine the
instantaneous velocity at that moment. In other words, the instantaneous velocity v,
equals the limiting value of the ratio Ax/Atas Atapproaches zero:*

(2.4)

= lim —
X A—0 At

In calculus notation, this limit is called the derivative of x with respect to ¢, writ-

ten dx/di:

v

= Ax  dx
= lim —=—
¥ A0 At dt

v (2.5)
The instantaneous velocity can be positive, negative, or zero. When the slope
of the position—time graph is positive, such as at any time during the first 10 s in
Figure 2.3, v_is positive and the car is moving toward larger values of x. After point
®, v, is negative because the slope is negative and the car is moving toward smaller
values of x. At point ®), the slope and the instantaneous velocity are zero and the
car is momentarily at rest.

*As mentioned previously, the displacement Ax also approaches zero as At approaches zero, so the ratio Ax/At looks
like 0/0. The ratio can be evaluated in the limit in this situation, however. As Ax and At become smaller and smaller,
the ratio Ax/At approaches a value equal to the slope of the line tangent to the x-versus- curve.

tangent line as point ® is
moved closer to point ®.

PITFALL PREVENTION 2.2

Slopes of Graphs In any graph

of physical data, the slope rep-
resents the ratio of the change in
the quantity represented on the
vertical axis to the change in the
quantity represented on the hori-
zontal axis. Remember that a slope
has units (unless both axes have
the same units). The units of slope
in Figures 2.1b and 2.3 are meters
per second, the units of velocity.

PITFALL PREVENTION 2.3

Instantaneous Speed and Instan-
taneous Velocity In Pitfall Pre-
vention 2.1, we argued that the
magnitude of the average velocity
is not the average speed. The mag-
nitude of the instantaneous veloc-
ity, however, is the instantaneous
speed. In an infinitesimal time
interval, the magnitude of the dis-
placement is equal to the distance
traveled by the particle.

< Instantaneous velocity
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From here on, we use the word velocity to designate instantaneous velocity. When 2.3
we are interested in average velocity, we shall always use the adjective average.

The instantaneous speed of a particle is defined as the magnitude of its instan-
taneous velocity. As with average speed, instantaneous speed has no direction asso-
ciated with it. For example, if one particle has an instantaneous velocity of +25 m/s
along a given line and another particle has an instantaneous velocity of —25 m/s
along the same line, both have a speed® of 25 m/s.

In the first time interval, set ¢, = lg = 0 agnd b= g = 1s. Ax®_> =X X = Xg ~ Xg
< titute these values into x = —4¢ + 2(%> and us Y .
Substitute these values into x and use — [=4(1) + 201)7] — [—4(0) + 2(0)] = —2m

Equation 2.1 to find the displacement:

For the second time interval (t= 1sto = 3s),set (. = Ax@ =X~ X = Xg ~ Xg

=1 dit:= 15 = 3s ' , )
. . . . Lot A A = [4(3) + 28] — [~4(1) + 2()*] = +8m
(PIUICK QUIZ 2.3 Are officers in the highway patrol more interested in (a) your

« average speed or (b) your instantaneous speed as you drive? These displacements can also be read directly from the position—time graph.

(B) Calculate the average velocity during these two time intervals.

|- ~. -1 The Velocity of Different Objects

Consider the following one-dimensional motions: (A) a ball thrown directly upward rises to a highest point and falls back S . ) ) Axg _, —9m
| into the thrower’s hand; (B) a race car starts from rest and speeds up to 100 m/s; and (C) a spacecraft drifts through space In the first time interval, use Equation 2.2 with Az = Uag@®-® A, 1s -2 m/s
| at constant velocity. Are there any points in the motion of these objects at which the instantaneous velocity has the same L= = tg ~ lg = Ls:
| value as the average velocity over the entire motion? If so, identify the point(s). o Axg .o 8m
: In the second time interval, At = 2 s: - ®—0) = A—t = E = +4m/s
! o s 5 : ; ; s . These values are the same as the slopes of the blue lines joining these points in Figure 2.4a.
‘ ' (A) The average velocity for the thrown ball is zero because the ball returns to the starting point; therefore, its displacement is
| zero. There is one point at which the instantaneous velocity is zero: at the top of the motion. , ! . )
| . ) ) . ) . . (C) Find the instantaneous velocity of the particle at ¢t = 2.5 s.
| (B) The car’s average velocity cannot be evaluated unambiguously with the information given, but it must have some value
| between 0 and 100 m/s. Because the car will have every instantaneous velocity between 0 and 100 m/s at some time during NS wl
the interval, there must be some instant at which the instantaneous velocity is equal to the average velocity over the entire 10 m — (—4 m)
motion. Calculate the slope of the green line at ¢ = 2.5 s (point ©) v=—————""= +6m/s

x § — =4
in Figure 2.4a by reading position and time values for the SES S

(C) Because the spacecraft’s instantaneous velocity is constant, its instantaneous velocity at any time and its average velocity i )
ends of the green line from the graph:

over any time interval are the same.

Notice that this instantaneous velocity is on the same order of magnitude as our previous results, that is, a few meters per

7 second. Is that what you would have expected?

=7 Average and Instantaneous Velocity T
8 -

Slope = +4 m/s

A particle moves along the x axis. Its position varies with time according to the expres- 6

sion x = —4¢ + 2¢2, where x is in meters and ¢ is in seconds.? The position—time graph i Slope = —2 m/s

for this motion is shown in Figure 2.4a. Because the position of the particle is given by a i m 3 . H i

mathematical function, the motion of the particle is known at all times, unlike that of the 2 AnaIVSIs MOdeI' ParthIe Under ConStant veloc“y

car in Figure 2.1, where data is only provided at six instants of time. Notice that the parti- ®/ | | s s . ; 3

sy ; ORI . T s @ Hs) In Section 1.2 we discussed the importance of making models. As mentioned

cle moves in the negative x direction for the first second of motion, is momentarily at rest 5 ther “ticularly i , del P jisth Boos bl 3

at the moment { = 1 s, and moves in the positive x direction at times ¢ > 1 s. i eSS @ par tcularly 1mp0rl.anl mo e. usedin the bf) utl(.)n to physics pro. cms 18
" = L an analysis model. An analysis model is a common situation that occurs time and < Analysis model
i (A) Determine the displacement of the particle in the time intervals ¢ = 0 to ¢ = 1 s and 0 1 2 3 4 again when solving physics problems. Because it represents a common situation,

t=1stot=3s. it also represents a common type of problem that we have solved before. When

you identify an analysis model in a new problem, the solution to the new problem
can be modeled after that of the previously solved problem. Analysis models help
us to recognize those common situations and guide us toward a solution to the
problem. The form that an analysis model takes is a description of either (1) the
behavior of some physical entity or (2) the interaction between that entity and
the environment. When you encounter a new problem, you should identify the
fundamental details of the problem, ignore details that are not important, and
attempt to recognize which of the situations you have already seen that might
be used as a model for the new problem. For example, suppose an automobile is
moving along a straight freeway at a constant speed. Is it important that it is an
automobile? Is it important that it is a freeway? If the answers to both questions
are no, but the car moves in a straight line at constant speed, we model the auto-

| From the graph in Figure 2.4a, form a mental representation of the particle’s motion. Keep
in mind that the particle does not move in a curved path in space such as that shown by the

| red-brown curve in the graphical representation. The particle moves only along the x axis  Figure 2.4 (Example 2.3)

| in one dimension as shown in Figure 2.4b. At ¢ = 0, is it moving to the right or to the left? (a) Position—time graph for a particle

. During the first time interval, the slope is negative and hence the average velocity is havingan xcoordinate that varies in

| negative. Therefore, we know that the displacement between ® and ® must be a negative ~time according to the expression

| number having units of meters. Similarly, we expect the displacement between ® and ® to  *~ —4[,+ 2. _(b) Lhepaicle neves

be positive. in one dimension along the x axis.

= . continued

*As with velocity, we drop the adjective for instantancous speed. Speed means “instantaneous speed.”

*Simply to make it easier to read, we write the expression as x = —4( + 2¢ rather than as x = (—4.00 m/s)¢ +
(2.00 m/s%) %, When an equation summarizes measurements, consider its coefficients and exponents to have as
many significant figures as other data quoted in a problem. Consider its coefficients to have the units required for
dimensional consistency. When we start our clocks at ¢ = 0, we usually do not mean to limit the precision to a single
digit. Consider any zero value in this book to have as many significant figures as you need.

mobile as a particle under constant velocity, which we will discuss in this section.
Once the problem has been modeled, it is no longer about an automobile. It
is about a particle undergoing a certain type of motion, a motion that we have
studied before.
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Figure 2.5 Position—time graph
for a particle under constant
velocity. The value of the constant
velocity is the slope of the line.

Position as a function of »
time for the particle under
constant velocity model

This method is somewhat similar to the common practice in the legal profession
of finding “legal precedents.” If a previously resolved case can be found that is very
similar legally to the current one, it is used as a model and an argument is made in
court to link them logically. The finding in the previous case can then be used to
sway the finding in the current case. We will do something similar in physics. For
a given problem, we search for a “physics precedent,” a model with which we are
already familiar and that can be applied to the current problem.

All of the analysis models that we will develop are based on four fundamental
simplification models. The first of the four is the particle model discussed in the
introduction to this chapter. We will look at a particle under various behaviors
and environmental interactions. Further analysis models are introduced in later
chapters based on simplification models of a system, a rigid object, and a wave. Once
we have introduced these analysis models, we shall see that they appear again and
again in different problem situations.

When solving a problem, you should avoid browsing through the chapter looking
for an equation that contains the unknown variable that is requested in the problem.
In many cases, the equation you find may have nothing to do with the problem you
are attempting to solve. It is much better to take this first step: Identify the analysis
model that is appropriate for the problem. To do so, think carefully about what is
going on in the problem and match it to a situation you have seen before. Once the
analysis model is identified, there are a small number of equations from which to
choose that are appropriate for that model, sometimes only one equation. Therefore,
the model tells you which equation(s) to use for the mathematical representation.

Let us use Equation 2.2 to build our first analysis model for solving problems.
We imagine a particle moving with a constant velocity. The model of a particle
under constant velocity can be applied in any situation in which an entity that can
be modeled as a particle is moving with constant velocity. This situation occurs fre-
quently, so this model is important.

If the velocity of a particle is constant, its instantaneous velocity at any instant
during a time interval is the same as the average velocity over the interval. That is,
0, =0 Therefore, substituting v_for 2 i in Equation 2.2 gives us an equation to

x X,a

be used in the mathematical representation of this situation:

_ Ax

T (2.6)

%

Remembering that Ax = X, — X, we see that v, = (x[— x,.)/At, or

x =%+ v At
This equation tells us that the position of the particle is given by the sum of its orig-
inal position x,at time ¢ = 0 plus the displacement v, At that occurs during the time
interval At. In practice, we usually choose the time at the beginning of the interval
to be ¢, = 0 and the time at the end of the interval to be 7, = {, so our equation
becomes
X = x, + vt (for constant v) (2.7)

Equations 2.6 and 2.7 are the primary equations used in the model of a particle under
constant velocity. Whenever you have identified the analysis model in a problem to
be the particle under constant velocity, you can immediately turn to these equations.

Figure 2.5 is a graphical representation of the particle under constant velocity. On
this position—time graph, the slope of the line representing the motion is constant and
equal to the magnitude of the velocity. Equation 2.7, which is the equation of a straight
line, is the mathematical representation of the particle under constant velocity model.
The slope of the straight line is v_and the yintercept is x,in both representations.

In the opening storyline, the particle under constant velocity model was repre-
sented by the part of the motion taking place at “fixed speed.” You found in the
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storyline that the time intervals between poles were always the same in this case.
Is this result consistent with Equation 2.7? Example 2.4 below shows a numerical
application of the particle under constant velocity model.

Modeling a Runner as a Particle

A kinesiologist is studying the biomechanics of the human body. (Kinesiology is the study of the movement of the human
body. Notice the connection to the word kinematics.) She determines the velocity of an experimental subject while he runs
along a straight line at a constant rate. The kinesiologist starts the stopwatch at the moment the runner passes a given point
and stops it after the runner has passed another point 20 m away. The time interval indicated on the stopwatch is 4.0 s.

(A) What is the runner’s velocity?

; _ _ ; i :
We model the moving runner as a particle because the size of the runner and the movement of arms and legs are

unnecessary Fletalls. Because the problem states that the subject runs “at a constant rate,” we can model him as a particle under
constant velocity.

Having identified the model, we can use Equation 2.6 to U, = Az =t e BV 8 5.0m/s
- . . ’ )
find the constant velocity of the runner: Al At b

(B) If the runner continues his motion after the stopwatch is stopped, what is his position after 10 s have passed?

Use Equation 2.7 and the velocity found in part (A) to X=X +vt=0+ (5.0m/s)(10s) = 50 m
find the position of the particle at time ¢ = 10 s: o

Is Lhe result.for part (A) a reasonable speed for a human? How does it compare to world-record speeds in 100-m and 200-m
sprints? N<?t1ce th'C value in part (B) is more than twice that of the 20-m position at which the stopwatch was stopped. Is this
value consistent with the time of 10 s being more than twice the time of 4.0 s?

The mathematical manipulations for the particle under constant velocity stem from
Equation 2.6 and its descendent, Equation 2.7. These equations can be used to solve
for any variable in the equations that happens to be unknown if the other variables
are known. For example, in part (B) of Example 2.4, we find the position when the
v_elocity and the time are known. Similarly, if we know the velocity and the final posi-
tion, we could use Equation 2.7 to find the time at which the runner is at this position.

. A particle under constant velocity moves with a constant speed along a straight
line. Now consider a particle moving with a constant speed through a distance d
along a curved path. As we will see in Section 2.5 below, a change in the direction of
motion of a particle signifies a change in the velocity of a particle even though its
§peed is constant; there is a change in the speed wvector. Therefore, our particle mov-
ing along a curved path is not represented by the particle under constant velocity
model. However, it can be represented with the model of a particle under constant
speed. The primary equation for this model is Equation 2.3, with the average speed
U, Teplaced by the constant speed v: )

d

V=

At

As an example, imagine a particle moving at a constant speed in a circular path. If

Fhe speed is 5.00 m/s and the radius of the path is 10.0 m, we can calculate the time
interval required to complete one trip around the circle:

(2.8)

v=ﬁ——> Alzii_Q_m: 27r(10.0 m) B
At v 500m/s laks
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O\ RSN (elo] M Particle Under Constant Velocity
Imagine a moving object that can be modeled as a particle. Examples:

If it moves at a constant speed through a displacement Axin a
straight line in a time interval A¢, its constant velocity is

e a meteoroid traveling through gravity-free space
® acar traveling at a constant speed on a straight highway

¥ = Ax (2.6) e arunner traveling at constant speed on a perfectly
tAL straight path
The position of the particle as a function of time is given by ° an object moving at terminal speed through a viscous

'

;;=xi+ vl

dium (Chapter 6)
(2.7) Sisdinn (Ehay

1;.—»;—»—»—»—»

CUTANEIERV[o]o] S8 Particle Under Constant Speed

Imagine a moving object that can be modeled as a particle. Examples:

If it moves at a constant speed through a distance d along a
straight line or a curved path in a time interval A, its constant

speed is

e a planet traveling around a perfectly circular orbit

® a car traveling at a constant speed on a curved racetrack
e arunner traveling at constant speed on a curved path
(2.8) e a charged particle moving through a uniform magnetic
field (Chapter 28)

The Analysis Model Approach to Problem Solving

We have just seen our first analysis models: the particle under constant velocity
and the particle under constant speed. Now, what do we do with these models?
The analysis models fit into a general method of solving problems that we describe
below. In particular, pay attention to the “Categorize” step in the discussion below.
That is where you identify the analysis model to be applied to the problem. After
that, the problem is solved using the equation or equations that you have already
learned to be associated with that model. This is the way physicists approach com-
plex situations and complicated problems, and break them into manageable pieces.
It is an extremely useful skill for you to learn. It may look complicated at first, but it
will become easier and of second nature as you practice it!

Conceptualize

* The first things to do when approaching a problem are to think about and
understand the situation. Study carefully any representations of the informa-
tion (for example, diagrams, graphs, tables, or photographs) that accompany
the problem. Imagine a movie, running in your mind, of what happens in the
problem: the mental representation.

* If a pictorial representation is not provided, you should almost always make a
quick drawing of the situation. Indicate any known values, perhaps in a table
or directly on your sketch.

* Now focus on what algebraic or numerical information is given in the problem.
Carefully read the problem statement, looking for key phrases such as “starts
from rest” (v, = 0) or “stops” (v/.= 0).

2.4 The Analysis Model Approach to Problem Solving

* Now focus on the expected result of solving the problem. Exactly what is the
question asking? Will the final result be numerical, algebraic, or verbal? Do
you know what units to expect?

* Don’t forget to incorporate information from your own experiences and
common sense. What should a reasonable answer look like? For example, you
wouldn’t expect to calculate the speed of an automobile to be 5 X 10° m/s.

Categorize

® Once you have a good idea of what the problem is about, you need to simplify
the problem. Use a simplification model to remove the details that are not
important to the solution. For example, model a moving object as a particle.
If appropriate, ignore air resistance or friction between a sliding object and
a surface.

* Once the problem is simplified, it is important to categorize the problem in
one of two ways. Is it a simple substitution problem such that numbers can be
substituted into a simple equation or a definition? If so, the problem is likely
to be finished when this substitution is done. If not, you face what we.call an
analysis problem: the situation must be analyzed more deeply to generate an
appropriate equation and reach a solution.

* Ifitis an analysis'problem, it needs to be categorized further. Have you seen
this type of problem before? Does it fall into the growing list of types of
problems that you have solved previously? If so, identify any analysis model(s)
appropriate for the problem to prepare for the Analyze step below. Being
able to classify a problem with an analysis model can make it much easier to
lay out a plan to solve it.

Analyze

¢ Now you must analyze the problem and strive for a mathematical solution.
Because you have already categorized the problem and identified an analysis
model, it should not be too difficult to select relevant equations that apply to
the type of situation in the problem. For example, if the problem involves a
particle under constant velocity, Equation 2.7 is relevant.

* Use algebra (and calculus, if necessary) to solve symbolically for the unknown
variable in terms of what is given. Finally, substitute in the appropriate numbers,
calculate the result, and round it to the proper number of significant figures.

Finalize

* Examine your numerical answer. Does it have the correct units? Does it
meet your expectations from your conceptualization of the problem? What
about the algebraic form of the result? Does it make sense? Examine the
variables in the problem to see whether the answer would change in a physi-
cally meaningful way if the variables were drastically increased or decreased
or even became zero. Looking at limiting cases to see whether they yield
expected values is a very useful way to make sure that you are obtaining
reasonable results.

® Think about how this problem compared with others you have solved. How
was it similar? In what critical ways did it differ? Why was this problem
assigned? Can you figure out what you have learned by doing it? If it is a new
category of problem, be sure you understand it so that you can use it as a
model for solving similar problems in the future.

When solving complex problems, you may need to identify a series of subprob-
lems and apply the Analysis Model Approach to each. For simple problems, you
probably don’t need this approach. When you are trying to solve a problem and you
don’t know what to do next, however, remember the steps in the approach and use
them as a guide.

31
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1 ] p i ze, and
In the rest of this book, we will label the Conceptualize, .C(.Llegor%u.z, A"naly e and R
Finalize steps in the worked examples. If a worked example is identified as a subst The slop ofthe green ine i
, there will generally not be Analyze and Finalize e

tution problem in the Categorize step,
sections labeled in the solution.
To show how to apply this approac

Uy

The car moves with

i nple 2.4 below, with the
e leprOduce = ’ different velocities at

; he approach labeled. oints @ and ®.
steps of t PP P The slope of the blue
line connecting ® and Fi

I . z igure 2.6 (a) A car leled
‘ Z3°T Modeling a Runner as a Particle ® I e ® Bithe average as?\ particle (m)ovi;;]-,\llzsgiheé
i £ h body. (Kinesiology is the study of the movement of the human —e- = - - x gccélemlﬁ Cpraiiieear | xaxis from ® to ®, has velocity
iy At : i ‘hanics of the human body. Z . : : y ) t b WHug e meintenya t{=tand i i
| A kinesiologist is studying the biomechani : : -+ of an experimental subject while he runs e Yy 9t £ = fand velocity 4, at
| 5 he word kinematics.) She determines the velocity of an exp J U= Uy U=y At = t= 4 (Eq. 2.9). t=t. (b) Velocity-time g/raph

t the moment the runner passes a given point

body. Notice the connection to t
terval indicated on the stopwatch is 4.0 s.

tant rate. The kinesiologist starts the stopwatch.a
has passed another point 20 m away. The time In

(red-brown) for the particle

i . .
| along astraightline ata cons o '
moving in a straight line.

and stops it after the runner
: 7 ity?
(A) What is the runner’s velocity: dimensions of length divided by time squared, or L/ T2 The SI unit of acceleration
is meters per second squared (m/s%). It might be easier to interpret these units if you
er and the movement of arms and think of them as meters per second per second. For example, suppose an object has
an acceleration of +2 m/s*. You can interpret this value by forming a mental image
‘ . oo 4 o constant rate,” we can model him as 2 particle under of [1.]('3 objec~L h:aving a velocity that is along a straight line and is increasing by 2 m/s
P — problem states that the subject runs “a , dun.ng every tun.e interval of 1 s. If the object starts from rest, you should be able
| to picture it moving at a velocity of +2 m/s after 1 s, at +4 m/s after 2 s, and so on.
e 0m-0_ oo : When your fr-iend' sped up from the traffic light i}l the opening storyline, you
it Bl e R TR 7 P = k. ounc-l that the .tlme m.Lervals between Poles on the side of the road decreased. Is
that result consistent with your expectations? Each new displacement between poles
is undertaken at a higher speed, so the time intervals between poles become smaller.
In some situations, the value of the average acceleration may be different over dif-
ferent time intervals. It is therefore useful to define the instantaneous acceleration as
- : the limit of the average acceleration as At approaches zero. This concept is analogous
x,=xtut=0%+ (5.0 m/s)(10s) = 50 m to the definition of instantaneous velocity discussed in Section 2.2. If we imagine that
, point @ is brought closer and closer to point ® in Figure 2.6a and we take the limit
of Az/A/At as Atapproaches zero, we obtain the instantaneous acceleration at point ®:

Conceptualize We model the moving r
| legs are unnecessary details.

unner as a particle because the size of the runn

| constant velocity.

Analyze Having identified the model, we can use E
J find the constant velocity of the runner:
!

. G i 5
fter the stopwatch is stopped, whatis his position after 10 s have passed:

| (B) If the runner continues his motion a

U; Equatlon 2.7 and the velocity found in part (A) to
J .

| find the position of the particle at time [ = 10 s:

| peed fora human? How does it compare to world-record speeds in 100-m and

] sl g = e han twice that of the 20-m position at which the stopwatch was stopped. Is

< Instantaneous acceleration

{ . i lue in part (B) is more t
| 200-m sprints? Notice the va : - ime of 4.0 s? e
| : : : -e than twice the time ol 4.U 8¢ ) v v
| this value consistent with the time of 10 s being more th a = lim < = (2.10)
; *oa—0 Ar dt
v.’\'
l
% . . . . . l l I
A I ration That is, the instantaneous acceleration equals the derivative of the velocity with : P
. . - .. . ¥ I
E!a ccele . respect to time, which by definition is the slope of the velocity—time graph. The @\ lo lo !
In Example 2.3, we worked with a common situation in which the velocity of a parti- slope of the green line in Figure 2.6b is equal to the instantaneous acceleration at
11 X - ) . el O o, . . S . . . . .
1 chanpes while the particle is moving, When the velocity of a particle changes with point ®. Notice that Figure 2.6b is a velocity—time graph, not a position—time graph
t' e theg article is said to be accelerating. For example, the magnitude of a car’s velocity like Figures 2.1b, 2.3, 2.4, and 2.5. Therefore, we see that just as the velocity of a The acceleration at any time
- . T ) g e ;
incréases I;;hen you step on the gas and decreases when you apply the })rakes. BOﬂ.l of mpvmg Pdr[l.de is the slope at a.pomt on the particle’s x—¢ graph, the acceleration equals the slope of the line
h tions result in an acceleration of the car. Let us see how to quantify acceleration. of a particle is the slope at a point on the particle’s v ~¢ graph. One can interpret tangent {o the curve of v,
t e;e actio "1 obiect that can be modeled as a particle moving along the x axis has the derivative of the velocity with respect to time as the time rate of change of veloc- e ol s e
uppose )] d a final velocity v, at time ¢.at position ity. If a_is positive, the acceleration is in the positive x direction; if a_is negative, the %

an initial velocity v ;at time ¢ at position ® an

as in Figure 2.6a. The red-brown curve in Figure 9 6b shows how the velocity var cceleration is in the negative x direction.

of the particle is defined as the change Figure 2.7 illustrates how an acceleration—time graph is related to a velocity—

ies with time. The average acceleration ¢, Ot U ) . : . " S ' ;
wes locity Av_divided by the time interval A during which that change occurs: time graph. The acceleration at any time is the slope of the velocity—time graph at - |© l
g ; art :
in velocity Av, that time. Positive values of acceleration correspond to those points in Figure 2.7a I 2 l
Av, Uy Y (2.9) where 'the velocity is increasing in the positive x direction. The acceleration reaches
sverags sceoleration » T L L a maximum at time /g, when the slope of the velocity—time graph is a maximum. :
The acceleration then goes to zero at time ¢g, when the velocity is a maximum (that Figure 2.7 () The velocity-time
As with velocity, when the motion being analyzed is one dimensional, we can use s,lwh.en_the slope 'of tbe v —~tgr aP_h is Z(:‘l'O). The acceleration is negative when the ﬁlgi‘;ﬁ: a(]';)a 'Ttifekn'zf:;l:f along
s with ve y’, . indi the direction of the acceleration. Because velocity is decreasing in the positive x direction, and it reaches its most negative 1 ameons
positive and negative SIgnS to indicate : . .. leration has value at time ¢ e g 20 SaRC S
the dimensions of velocity are L/T and the dimension of time is T, acceleration © thie-velosity=tme graph:
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@ UICK QUIZ 2.4 Make a velocity—time graph for the car in Figure 2.1a. Suppose 2.5
- the speed limit for the road on which the car is driving is 30 km/h. True or False? The scesieration at . . i , %
¢ The car exceeds the speed limit at some time within the time interval 0—50 s. ) ) .an)r/ instant is the slope of the t‘angcm 9
the v ~t graph at that instant. The graph of acceleration versus !
For the case of motion in a straight line, the direction of the velocity of an object time for this object is shown in Figure 2.8c. The acceleration v E !
and the direction of its acceleration are related as follows. When the object’s veloc- i Conaramt a’l}d~ PORILIYE bet_“fee“ 0 and tg, where the slope of o] ! |
ity and acceleration are in the same direction, the object is speeding up. On the the 7t g1 PR osmve..Il i betwe‘e Rilgand fg an.d Lor i ' [
S s ; ; ; s \ . > g because the slope of the v ~t graph is zero at these times. ' [ | .
other hand, when the object’s velocity and acceleration are in opposite directions, fiis negative between ty and. iy because the slope of + ° ; — | [ ;
. . . ® s pe of the v —t ® e lg te o lo
the object is slowing down. graph is negative during this interval. Between #g and ., the i P i P
To help with this discussion of the signs of velocity and acceleration, we can acceleration is positive like it is between 0 and l@)%ut higﬁer i Uy : L : L
relate the acceleration of an object to the total force exerted on the object. In value because the slope of the v ~t graph is steeper. ) | L | ! |
Chapter 5, we formally establish that the force on an object is proportional to the Notice that the sudden changes in acceleration shown in : L ! (.
acceleration of the object: Figure 2.8¢ are unphysical. Such instantaneous changes can- L L i — ¢
not occur in reality. ‘e lo to M@
Ay | | [
This proportionality indicates that acceleration is caused by force. Furthermore, Fi 28 i o ) : : o
force and acceleration are both vectors, and the vectors are in the same direction. |gur.e = (Qoncepmal hxaml?le 2.5) 19) POSI[.'OH_.{ ime graph for :
] . X . . : o an object moving along the xaxis. (b) The velocity—time graph for the | f
Therefore, let us think about the s1gns of V€10C1ty and acceleration by magining a object is obtained by measuring the slope of the position—time graph at = P *, t f
force applied to an object and causing it to accelerate. Let us assume the velocity each instant. (c) The acceleration—time graph for the object is obtained ® Le ‘o] ‘e
and acceleration are in the same direction. This situation corresponds to an object by measuring the slope of the velocity-time graph at each instant.
that experiences a force acting in the same direction as its velocity. In this case, the
object speeds up! Now suppose the velocity and acceleration are in opposite direc-
tions. In this situation, the object moves in some direction and experiences a force
acting in the op.posge direction. Theref.ore, the objf:ct slpws down! It is very USC.fllll minle X Average and Instantaneous Acceleration
to equate the direction of the acceleration to the direction of a force because it is ,
P|TF/§LL PREVEN-”ON 2:4 (eame}; frortr;our evel—I'Ydlily ei(p.erlence tofth}inl;‘abou.t Whaft clszect‘a lforcs* will have on The velocity‘)of a particle moving along the x axis varies according to the expression
g?ggtzl\:z ll\:gt;zltz::;:lpzza 1; - iil object than to think only in terms of the direction of the acceleration. v, = 40 — 5¢%, where v_is in meters per second and tis in seconds. ’trhhe ?cceleration at ® is equal to
not necessarily mean that an object is (LIUICK QUIZ 2.5 TIfa car is traveling eastward and slowing down, what is (A) Find the average acceleration in the time interval = 0 to (= 2.0 s. li s t;};)e:o‘zf [lle}%}.e}lel?_tir;genl 9
slowing down. If the acceleration is the direction of the force on the car that causes it to slow down? (a) eastward Ineat s = 2s, which is =20 m/'s%.
negative and the velocity is nega- » (b) westward (c) neither eastward nor westward 0 v, (m/s)
tive, the object is speeding up! - 40 ¢
From now on, we shall use the term acceleration to mean instantaneous accelera- Conceptualize Think about what the particle is doing ®
PITFALL PREVENTION 2.5 tion. When we mean average acceleration, we shall always use the adjective average. from the mathematical representation. Is it moving a
Deceleration The word decelera- Because v_= dx/dt, the acceleration can also be written as at¢= 02 In whichdirection? Dees it:speed. up or slow 20
tion has the common popular x down? Figure 2.9 is a v ~t graph that was created from
C(?nnolation of slowing down. We dv, 4 dx P the velocity versus time expression given in the problem 10
. will not se this word in th‘.s l?OOk == —<—> = Ti—z (2.12) staten.)ent, Because the slope of the entire v ~t curve is
. because it confuses the defini- e di\ dt ¢ negative, we expect the acceleration to be negative. 0 L(s)
tion we have given for negative L. . . . ) 2 3
acceleration. That is, in one-dimensional motion, the acceleration of a particle equals the Categorize The solution to this problem does not Fi ; -10
second derivative of the particle’s position x with respect to time. require either of the analysis models we have devel- ,r'}]g}lri 2? (Exam'?lc ]2 '?) -
| oped so far, and can b(? solved with simple mathematics. pa;i‘(jeog(}vi::;n;ci;ﬁlleoxl :xis 20
i ' Therefore, we categorize the problem as a substitution according to the expression —30
] = Graphical Relationships Between x, v, and a, problem. v, =40 - 52 0o 1 2 3 4
The position of an object moving along the x axis varies with time as in Figure 2.8a. Graph the velocity versus time and the Find the velocities at ¢, = ig = 0 and , = 1g = 2.0 s by U = 40 — 5t5% = 40 — 5(0)> = +40 m/s

substituting these values of ¢into the expression for

‘ acceleration versus time for the object.
| the velocity:

v, = 40 — blg? = 40 — 5(2.0) = +20 m/s

Y% % Ye Y%e 20m/s—40m/s

ot | The velocity at any instant is the slope of the tangent to the  the slope of the x~¢graph is zero, so the velocity is zero at that Use Equation 2.9 to find the average acceleration Cavg = =
| x—tgraph at that instant. Between ¢ = 0 and ¢ = (g, the slope  instant. Between (g and (g, the slope of the x-t graph and in the specified time interval At = tg — (5 = 2.0's: b o~ 205—0s
| of the x—¢ graph increases uniformly, so the velocity increases therefore the velocity are negative and decrease uniformly B 3
 linearly as shown in Figure 2.8b. Between i and tg, the slope in this interval. In the interval (g to {g, the slope of the x—{ = —10m/s
, | of the x—¢ graph is constant, so the velocity remains constant. graph is still negative, and at g, it goes to zero. Finally, after
: Between (g and {g, th'e slope of the x- graph decreases, o {g, the slope of the x—t graph is zero, meaning that the object The negative sign is consistent with our expectations: the average acceleration, represented by the slope of the blue line
| the value of the velocity in the v ~t graph decreases. At (g, is at rest for (> g, Joining the initial and final points on the velocity—time graph, is negative.

| | continued .
continued
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2.6 This car moves at \
constant velocity (zero ‘
(B) Determine the acceleration at ¢t = 2.0's. acceleration).
§ This car has a constant v B = = — —_—
. e . : . acceleration in th R e s T = = P <
Knowing that the initial velocity at any time /1is & EEEtedEts & s

v =40 — 5(t+ Af? = 40 — 512 — 10t At — 5(Ay)? : ;
¥ direction of its velocity. .
Figure 2.10 Motion diagrams

| v, =40 — 5¢2, find the velocity at any later time ¢ + At: Q= = = - e
of a car moving along a straight

| Find the change in velocity over the time interval At Ay, = v, ,—v,= —10t At — 5(A0)? This car has a y— _—— roadway in a single direction.

i ’ constant acceleration o= —-. = The velocity at each instant is

; ; . .. : in the direction ——— T— indicated by a red arrow, and the

§ To find the acceleration at any time ¢, divide this Av, opposite its velocity. a <= - constant acceleration is indicated

| expression by Atand take the limit of the result a.= Al}LnO Tt = A}TO(—IOI — b5 A = —10t by a purple arrow.

as Atapproaches zero:

could model the car as a particle and describe it with the particle under constant
velocity model. The red velocity arrows are all of equal length, and there is no pur-
ple acceleration arrow shown because it is of length zero.
!: : In Figure 2.10b, the images become farther apart as time progresses. In this
‘ | Finalize Notice that the answers to parts (A) and (B) are different. The average acceleration in part (A) is the slope of the case, the red velocity arrows increase in length with time because the car’s displace-
blue line in Figure 2.9 c01.mecting p.oints ® and ®. The instz}nta.neous accelel‘aFion .in part (B) is‘ the §lope? of thf: green line ment between adjacent positions increases in time. These features suggest the car is \
| ‘: ;iilglir;;E?O::l;zu;\;;tdp;:ré[e;(S]OQ“;C also that the acceleration is not constant in this example. Situations involving constant mov_mg witha pos%tzve yeloczty and a positive acceleration. The velocity and acceleration
7. are in the same direction. In terms of our earlier force discussion, imagine a force
‘ pulling on the car in the same direction it is moving: it speeds up.

| Substitute ( = 2.0s: a, = (—10)(2.0) m/s2= —20m/s®

| Because the velocity of the particle is positive and the acceleration is negative at this instant, the particle is slowing down.

So far, we have evaluated the derivatives of a function by starting with the defini-
tion of the function and then taking the limit of a specific ratio. If you are familiar
with calculus, you should recognize that there are specific rules for taking derivatives.
These rules, which are listed in Appendix B.6, enable us to evaluate derivatives quickly.
For instance, one rule tells us that the derivative of any constant is zero. As another
example, suppose xis proportional to some power of ¢such as in the expression

x= Ar®
where A and 7 are constants. (This expression is a very common functional form.)
The derivative of x with respect to ¢is

dx

- = TLAl”_l

dt
Applying these rules to Example 2.6, in which v, = 40 — 5#2, we quickly find that
the acceleration is a, = dv_/dt = —10¢, as we found in part (B) of the example.

FX3 Motion Diagrams

The concepts of velocity and acceleration are often confused with each other, but
in fact they are quite different quantities. In forming a mental representation of a
moving object, a pictorial representation called a motion diagram is sometimes use-
ful to describe the velocity and acceleration while an object is in motion.

A motion diagram can be formed by imagining a stroboscopic photograph of a
moving object, which shows several images of the object taken as the strobe light
flashes at a constant rate. Figure 2.1a is a motion diagram for the car studied in
Section 2.1. Figure 2.10 represents three sets of strobe photographs of cars moving
along a straight roadway in a single direction, from left to right. The time intervals
between flashes of the stroboscope are equal in each part of the diagram. So as
to not confuse the two vector quantities, we use red arrows for velocity and purple
arrows for acceleration in Figure 2.10. The arrows are shown at several instants dur-
ing the motion of the object. Let us describe the motion of the car in each diagram.

In Figure 2.10a, the images of the car are equally spaced, showing us that the car
moves through the same displacement in each time interval. This equal spacing is
consistent with the car moving with constant positive velocity and zero acceleration. We

In Figure 2.10c, we can tell that the car slows as it moves to the right because
its displacement between adjacent images decreases with time. This case suggests
the car moves to the right with a negative acceleration. The lengths of the veloc-
ity arrows decrease in time and eventually reach zero. From this diagram, we see
that the acceleration and velocity arrows are not in the same direction. The car is
moving with a positive velocity, but with a negative acceleration. (This type of motion
is exhibited by a car that skids to a stop after its brakes are applied.) The velocity
and acceleration are in opposite directions. In terms of our earlier force discus-
sion, imagine a force pulling on the car opposite to the direction it is moving: it
slows down.

Each purple acceleration arrow in parts (b) and (c) of Figure 2.10 is the same
length. Therefore, these diagrams represent motion of a particle under constant accel-
eration. This important analysis model will be discussed in the next section.

(®)UICK QUIZ 2.6 Which one of the following statements is true? (a) If a car

is traveling eastward, its acceleration must be eastward. (b) If a car is slowing
: down, its acceleration must be negative. (c) A particle with constant acceleration
¢ can never stop and stay stopped.

¥E1 Analysis Model: Particle
Under Constant Acceleration

If the acceleration of a particle varies in time, its motion can be complex and dif-
ficult to analyze. A very common and simple type of one-dimensional motion,
however, is that in which the acceleration is constant. In such a case, the average
acceleration @ g OVET any time interval is numerically equal to the instantaneous
acceleration ¢ at any instant within the interval, and the velocity changes at the
same rate throughout the motion. This situation occurs often enough that we iden-
tify it as an analysis model: the particle under constant acceleration. In the dis-
cussion that follows, we generate several equations that describe the motion of a
particle for this model.
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Slope = vu,;

~f——————

x

Slope = 0

~f—————e
[e—. R —>

Figure 211 A particle under
constant acceleration ¢, moving
along the xaxis: (a) the position—
time graph, (b) the velocity—time
graph, and (c) the acceleration—
time graph.

Position as a function of »

velocity and time for the

particle under constant
acceleration model

Position as a function of »
time for the particle under
constant acceleration model

If we replace a_, by a in Equation 2.9 and take #; = 0 and  to be any later time
t, we find that

vxj' - vxi
a =———
x t—0
or
v, = v, +al (for constant @) (2.13)

This powerful expression enables us to determine an object’s velocity at any time
¢ if we know the object’s initial velocity v and its (constant) acceleration a. A
velocity—time graph for this constant-acceleration motion is shown in Figure 2.11b.
The graph is a straight line, the slope of which is the acceleration a; the (con-
stant) slope is consistent with a = dvx/dt being a constant. Notice that the slope is
positive, which indicates a positive acceleration. If the acceleration were negative,
the slope of the line in Figure 2.11b would be negative. When the acceleration is
constant, the graph of acceleration versus time (Fig. 2.11c) is a straight line having
a slope of zero. ;

Because velocity at constant acceleration varies linearly in time according to
Equation 2.13, we can express the average velocity in any time interval as the arith-
metic mean of the initial velocity v, and the final velocity v, :

U+ v
Xt X,

Yag = 5 (for constant a ) (2.14)

Notice that this expression for average velocity applies only in situations in which
the acceleration is constant.
We can now use Equations 2.1, 2.2, and 2.14 to obtain the position of an object as
a function of time. Recalling that Ax in Equation 2.2 represents x, — x, and recog-
nizing that At = ¢ — ¢, = ¢t — 0 = ¢, we find that ‘
X, — X =U__ l=%(vxi+ v )t

x=x+ %(vm. + vx/.)l (for constant a) (2.15)

This equation provides the final position of the particle at time ¢in terms of the
initial and final velocities.

We can obtain another useful expression for the position of a particle under
constant acceleration by substituting Equation 2.13 into Equation 2.15:

1
%= x, +3lv, + (v, + a )]t

X = x, + b+ %axzf2 (for constant a) (2.16)

This equation provides the final position of the particle at time ¢in terms of the
initial position, the initial velocity, and the constant acceleration.

The position—time graph for motion at constant (positive) acceleration shown
in Figure 2.11a is obtained from Equation 2.16. Notice that the curve is a parab-
ola. The slope of the tangent line to this curve at ¢ = 0 equals the initial velocity
v,;, and the slope of the tangent line at any later time ¢ equals the velocity v, at
that time.
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Finally, we can obtain an expression for the final velocity that does not contain
time as a variable by substituting the value of tfrom Equation 2.13 into Equation 2.15:

v.— v v 22—y 2
- 1 4 ) xf Xy + xf xi
X =x+ 3(v, v\ = ) =% Ton

X x

vx/? =2+ 2a (x,— x) (for constant a,) (2.17)
This equation provides the final velocity in terms of the initial velocity, the constant
acceleration, and the position of the particle.

For motion at zero acceleration, we see from Equations 2.13 and 2.16 that

vV, =U. =1,
2 £ % when a =0
X, = x.t+ vt &

That is, when the acceleration of a particle is zero, its velocity is constant and its
position changes linearly with time. In terms of models, when the acceleration of a
particle is zero, the particle under constant acceleration model reduces to the par-
ticle under constant velocity model (Section 2.3).

Equations 2.13 through 2.17 are kinematic equations that may be used to solve
any problem involving a particle under constant acceleration in one dimension.
These equations are listed together below for convenience. The choice of which
equation you use in a given situation depends on what you know beforehand. Some-
times it is necessary to use two of these equations to solve for two unknowns. You
should recognize that the quantities that vary during the motion are position X,
velocity v, and time . ‘

You will gain a great deal of experience in the use of these equations by solving
a number of exercises and problems. Many times you will discover that more than
one method can be used to obtain a solution. Remember that these equations of
kinematics cannot be used in a situation in which the acceleration varies with time.
They can be used only when the acceleration is constant.

($JUICK QUIZ 2.7 In Figure 2.12, match each v ~t graph on the top with the

'~ a~lgraph on the bottom that best describes the motion.

ARV A i v
DUTAREIRR (010138 Particle Under Constant Acceleration

< Velocity as a function of
position for the particle under
constantacceleration model

Figure 212 (Quick Quiz 2.7)
Parts (a), (b), and (c) are v ~t
graphs of objects in one-
dimensional motion. The possible
accelerations of each object as

a function of time are shown in
scrambled order in (d), (e), and (f).

Imagine a moving object that can be modeled as a particle. If it begins from position x; and initial velocity v and moves in a
straight line with a constant acceleration a, its subsequent position and velocity are described by the following kinematic equations:

v, = v, +at (2.13) v-} —> ‘ = ‘ = . B
e —_—
v, T v, ”
Ui = T (214) Examples
: © a car accelerating at a constant rate along a straight
%= x+ 3y, + vxj)t (2.15) freeway
° a dropped object in the absence of air resistance
x=x+ v+ éaxl2 (2.16) (Section 2.8)
® an object on which a constant net force acts (Chapter 5)
vx/2 =92+ 2a (x,— x,) (2.17) e a charged particle in a uniform electric field (Chapter 22)
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Carrier Landing

A jetlands on an aircraft carrier at a speed of 140 mi/h (= 63 m/s).

(A) What is its acceleration (assumed constant) if it stops in 2.0 s due to an arresting cable that snags the jet and brings it to
a stop?

Conceptualize You might have seen movies or television shows in which a jet lands on an aircraft carrier and is brought to rest
| surprisingly fast by an arresting cable. A careful reading of the problem reveals that in addition to being given the initial speed
of 63 m/s, we also know that the final speed is zero. We define our x axis as the direction of motion of the jet. Notice that we
| have no information about the change in position of the jet while it is slowing down.

Categorize Because the acceleration of the jet is assumed constant, we model it as a particle under constant acceleration.

Yy~ %  0—63m/s

| Analyze Equation 2.13 is the only equation in the particle a = T
under constant acceleration model that does not involve peas
| position, so we use it to find the acceleration of the jet, = —32 m/s?
modeled as a particle: )
(B) If the jet touches down at position x, = 0, what is its final position?
Use Equation 2.15 to solve for the final position: x= x + 3(u, + v )t=0+ 563 m/s + 0)(2.0s) = 63m

Finalize Given the size of aircraft carriers, a length of 63 m seems reasonable for stopping the jet. The idea of using arresting
cables to slow down landing aircraft and enable them to land safely on ships originated at about the time of World War I. The
cables are still a vital part of the operation of modern aircraft carriers.

HE Suppose the jet lands on the deck of the aircraft carrier with a speed faster than 63 m/s but has the same
acceleration due to the cable as that calculated in part (A). How will that change the answer to part (B)?
Answer If the jet is traveling faster at the beginning, it will stop farther away from its starting point, so the answer to part (B)
should be larger. Mathematically, we see in Equation 2.15 that if v_.is larger, then xfwill be larger.

Watch Out for the Speed Limit!

You are driving at a constant speed of 45.0 m/s when you pass a ‘@ =—1.00s o =0

trooper on a motorcycle hidden behind a billboard. One second ®
after your car passes the billboard, the trooper sets out from the

billboard to catch you, accelerating ata constantrate of 3.00 m/s%.

How long does it take the trooper to overtake your car?

&
&
| Conceptualize This example represents a class of problems called
context-rich problems. These problems involve real-world situations
that one might encounter in one’s daily life. These problems also ~ Figure 2.13 (Example 2.8) You are in a speeding car that
| involve “you” as opposed to an unspecified particle or object. With ~ passes a hidden trooper.

you as the character in the problem, you can make the connection
between physics and everyday life!

. Categorize A pictorial representation (Fig. 2.13) helps clarify the sequence of events. Your car is modeled as a particle under
| constant velocity, and the trooper is modeled as a particle under constant acceleration.

| Analyze First, we write expressions for the position of each vehicle as a function of time. Itis convenient to choose the position
of the billboard as the origin and to set {5 = 0 as the time the trooper begins moving. At that instant, your car has already

continued
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2.8 .

traveled a distance of 45.0 m from the billboard because it has traveled at a constant speed of v, = 45.0 m/s for 1 s. Therefore,
the initial position of your car is xg = 45.0 m.

Using the particle under constant velocity model, apply X, = Xg 1 U .

xcar

Equation 2.7 to give your car’s position at any time &

A quick check shows that at ¢ = 0, this expression gives your car’s correct initial position when the trooper begins to
move: X = Xg = 45.0 m.

- 1
The trooper starts from rest at {g = 0 and accelerates at xX=xt v l+ 3a 12
a,= 3.00 m/s> away from tl?e origin. Use Equation 2.16 B = 0+ (0)t+ %axtz _ }Ea 2
to give her position at any time £ i

X

Set the positions of your car and the trooper equal to Xovsaner N
represent the trooper overtaking your car at position ©: %a\_tg = xg T U,
Rearrange to give a quadratic equation: %axt2 V. % =0
; : 5 : . Y car * .U_:T)car + Q(ZXX
Solve the quadratic equation for the time at which the L=
g 3 : a
trooper catches your car (for help in solving quadratic x
equations, see Appendix B.2): Wi v, 2xg
(D) g==—F g5+ —
(L.\‘ {l\ a.\’
- —— N . b . 45.0 m/s (45.0 m/s)>  2(45.0 m) e
valuate the solution, choosing the positive root because = - ;= 31.0s
smep 3.00m/s* "\ (3.00m/s)? " 3.00 m/s?

that is the only choice consistent with a time ¢ > 0:

Finalize Why didn’t we choose = 0 as the time at which your car passes the trooper? If we did so, we would not be able to use
the particle under constant acceleration model for the trooper. Her acceleration would be zero for the first second and then
3.00 m/s? for the remaining time. By defining the time ¢ = 0 as when the trooper begins moving, we can use the particle under
constant acceleration model for her movement for all positive times.

What if the trooper had a more powerful motorcycle with a larger acceleration? How would that change the
time at which the trooper catches your car?
Answer If the motorcycle has a larger acceleration, the trooper should catch up to your car sooner, so the answer for the time
should be less than 31 s. Because all terms on the right side of Equation (1) have the acceleration «_in the denominator, we see
symbolically that increasing the acceleration will decrease the time at which the trooper catches your car.

FX] Freely Falling Objects '

It is well known that, in the absence of air resistance, all objects dropped near the
Earth’s surface fall toward the Earth with the same constant acceleration under the
influence of the Earth’s gravity, regardless of their mass. It was not until about 1600
that this conclusion was accepted. Before that time, the teachings of the Greek philoso-
pher Aristotle (384-322 BC) had held that heavier objects fall faster than lighter ones.
The Italian Galileo Galilei (1564-1642) originated our present-day ideas con-
cerning falling objects. There is a legend that he demonstrated the behavior of fall- Galileo Galilei
ing objects by observing that two different weights dropped simultaneously from .- physicist and astronomer
the Leaning Tower of Pisa hit the ground at approximately the same time. Although (1564-1642)
there is some doubt that he carried out this particular experiment, it is well estab- Galileo formulated the laws that govern
lished that Galileo performed many experiments on objects moving on inclined  themotion of objects in free fall and
planes. In his experiments, he rolled balls down a slight incline and measured the made many other significant discover-

. . " . . e ies in physics and astronomy. Galileo
dist ~ ‘ - ol . ;
ances they covered in successive time intervals. The purpose of the incline was wilbofytaiiiae Niciolas BHperass

Georgios Kollidas/Shutterstock.com

to reduce the acceleration, which made it possible for him to make accurate mea- assertion that the Sun is at the center of
surements of the time intervals. By gradually increasing the slope of the incline,  the Universe (the heliocentric system).
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PITFALL PREVENTION 2.6

gand g Be sure not to confuse the
italic symbol gfor free-fall accel-
eration with the nonitalic symbol
g used as the abbreviation for the
unit gram.

PITFALL PREVENTION 2.7

The Sign of g Keep in mind that
gis a positive number. It is tempting
to substitute —9.80 m/s? for g,
but resist the temptation. Down-
ward gravitational acceleration is
indicated explicitly by stating the
acceleration as @, = —g.

PITFALL PREVENTION 2.8

Acceleration at the Top of the
Motion A common misconception
is that the acceleration of a pro-
jectile at the top of its trajectory
is zero. Although the velocity at
the top of the motion of an object
thrown upward momentarily goes
to zero, the acceleration is still that
due to gravity at this point. If the
velocity and acceleration were
both zero, the projectile would
stay at the top.

same throughout the fall.

Atany given instant, the speeds of the skydivers are different

he was finally able to draw conclusions about freely falling objects because a freely
falling ball is equivalent to a ball moving down a vertical incline.

You might want to try the following experiment. Simultaneously drop a coin
and a piece of paper from the same height. The coin will always reach the ground
faster. Now, crumple the paper into a tight ball and repeat the experiment. Since
you’ve minimized the effects of air resistance, the coin and the paper will have the
same motion and will hit the floor at the same time. In the idealized case, in which
air resistance is absent, such motion is referred to as free-fall motion. If this same
experiment could be conducted in a vacuum, in which air resistance is truly negli-
gible, the paper and the coin would fall with the same acceleration even when the
paper is not crumpled. On August 2, 1971, astronaut David Scott conducted such a
demonstration on the Moon. He simultaneously released a hammer and a feather,
and the two objects fell together to the lunar surface. This simple demonstration
surely would have pleased Galileo!

When we use the expression freely falling object, we do not necessarily refer to an
object dropped from rest. A freely falling object is any object moving freely under
the influence of gravity alone, regardless of its initial motion. Objects thrown
upward or downward and those released from rest are all falling freely once they
are released. Any freely falling object experiences an acceleration directed down-
ward, regardless of its initial motion.

We shall denote the magnitude of the free-fall acceleration, also called the accelera-
tion due to gravity, by the symbol g. The value of g decreases with increasing altitude
above the Earth’s surface. Furthermore, slight variations in g occur with changes
in latitude. At the Earth’s surface, the value of gis approximately 9.80 m/s2. Unless
stated otherwise, we shall use this value for ¢ when performing calculations. For
making quick estimates, use g~ 10 m/s%

If we neglect air resistance and assume the free-fall acceleration does not vary
with altitude over short vertical distances, the motion of a freely falling object mov-
ing vertically is equivalent to the motion of a particle under constant acceleration in
one dimension. Therefore, the equations developed in Section 2.7 for the particle
under constant acceleration model can be applied. The only modification for freely
falling objects that we need to make in these equations is to note that the motion
is in the vertical direction (the y direction) rather than in the horizontal direc-
tion (x) and that the acceleration is downward and has a magnitude of 9.80 m/s.
Therefore, we choose a, = —g = —9.80 m/s?, where the negative sign means that
the acceleration of a freely falling object is downward. In Chapter 13, we shall study
how to deal with variations in gwith altitude.

(®UICK QUIZ 2.8 Consider the following choices: (a) increases, (b) decreases,
- (c) increases and then decreases, (d) decreases and then increases, (€) remains
the same. From these choices, select what happens to (i) the acceleration and

o (ii) the speed of a ball after it is thrown upward into the air.

]| The Daring Skydivers

A skydiver jumps out of a hovering helicopter. A few seconds later, another skydiver jumps out, and they both fall along the
same vertical line. Ignore air resistance so that both skydivers fall with the same acceleration. Does the difference in their
speeds stay the same throughout the fall? Does the vertical distance between them stay the same throughout the fall?

The first jumper always has a greater speed than the sec-

because one had a head start. In any time interval A¢ after ond. Therefore, in a given time interval, the first skydiver
this instant, however, the two skydivers increase their speeds covers a greater distance than the second. Consequently, the
by the same amount because they have the same accelera- separation distance between them increases.

tion. Therefore, the difference in their speeds remains the
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1C Not a Bad Throw for a Rookie! tg=204s

Yy = 20.4m

'uy:O

A stone thrown from the top of a building is given an initial velocity i =8 B

of 20.0 m/s straight upward. The stone is launched 50.0 m above the
ground, and the stone just misses the edge of the roof on its way down
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as shown in Figure 2.14. :
: : ; = I
(A) Using {z = 0 as the time the stone leaves the thrower’s hand l® - g I
at position ®, determine the time at which the stone reaches its max- UJ@ = 90.0 m/s ,

imum height. ”1@ = —9.80 m/s2 '© lg=4.08s

g = ; Yo =0
{ | v, = —20.0 m/s
Dy a,e= —9.80 m/s?
I b o 9.

= B = [V [
Conceptualize You most likely Figure 2.14 (Example 2.10) Position, !
have experience with dropping velocity, and acceleration values at :
objects or throwing them upward various times for a freely falling stone Y
and watching them fall, so this thrown initially upward with a velocity :
problem should describe a familiar ¥ = 20-0 m/s. Many of the quantities I
experience. To simulate this situa- in the labels for points in the motion |
; P ) ; " of the stone are calculated in the :
tion, toss a small object upward and 5 ; | |
: e adloll example. Can you verify the other val- |

notice the time interval req s Ak arE He R ® to=500s

for it to fall to the floor. Now imag-
ine throwing that object upward
from the roof of a building.

Y= —22.5m
%o = —-29.0 m/sa
a0 = —9.80 m/s”

50.0 m

|
I

|

|

|

|

< " 50 % ; |
Categorize Because the stone is in free fall, it is modeled as a particle under |
: : |

constant acceleration due to gravity. |
|

|

|

|

|

i

I

I

I

Analyze Recognize that the initial velocity is positive because the
stone is launched upward. The velocity will change sign after the stone
reaches its highest point, but the acceleration of the stone will always be

downward so that it will always have a negative value. Choose an initial Yo~ _:79-0 m
point just after the stone leaves the person’s hand and a final point at S 8 ® Zy@i :3/8(]) ;’r";:z
the top of its flight. H® ' ’

tg= 5.83s

. 5 . v_v/'_ vyi v_)' )
Use Equation 2.13 to calculate the time at which the v= U, +at —>it= P —
stone reaches its maximum height: 'y g
. . .. . 0—20.0m/s
Substitute numerical values, recognizing that v = 0 at point ®: 1= 1g= 080m/sE /st = 2.04s
—9.80 m/s2

(B) Find the maximum height of the stone.

As in part (A), choose the initial and final points at the beginning and the end of the upward flight.

Set yp = 0 and substitute the time from part (A) Yoax = Jo = o T %a! ™t %ayt2

into Equation 2.16 to find the maximum height: Yo = 0 + (20.0 m/s)(2.045) + 1(~9.80 m/s2)(2.045)* = 20.4m

(C) Determine the velocity of the stone when it returns to the height from which it was thrown.

Choose the initial point where the stone is launched and the final point when it passes this position coming down.

Substitute known values into Equation 2.17: v)_©‘~’ = vy@? +2a,00e ~ Yo
2 = (20.0 m/s)?> + 2(—9.80 m/s?)(0 — 0) = 400 m?/s?

Vo= —20.0m/s

continued
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When taking the square root, we could choose either a positive or a negative root. We choose the negative root because we
| know that the stone is moving downward at point ©. The velocity of the stone when it arrives back at its original height is equal

| in magnitude to its initial velocity but is opposite in direction.

(D) Find the velocity and position of the stone at ¢ = 5.00 s.

Choose the initial point just after the throw and the final point 5.00 s later.

Calculate the velocity at ©® from Equation 2.13:

U= U@ T at=20.0m/s + (=9.80 m/s*)(5.005) = —29.0 m/s

Use Equation 2.16 to find the position of Yo =)o T vt ™t %ayt"’

the stone at lg = 5.00s:

=0+ (20.0 m/s)(5.00 s) + %(—9.80 m/s2)(5.00 s)?
= —225m

Finalize The choice of the time defined as ¢ = 0 is arbitrary and up to you to select as the problem solver. As an example of
this arbitrariness, choose ¢ = 0 as the time at which the stone is at the highest point in its motion. Then solve parts (C) and (D)

| would change?

| again using this new initial instant and notice that your answers are the same as those above.

What if the throw were from 30.0 m above the ground instead of 50.0 m? Which answers in parts (A) to (D)

Answer None of the answers would change. All the motion takes place in the air during the first 5.00 s. (Notice that even for
| a throw from 30.0 m, the stone is above the ground at ¢ = 5.00 s.) Therefore, the height from which the stone is thrown is not
| an issue. Mathematically, if we look back over our calculations, we see that we never entered the height from which the stone

| is thrown into any equation.

PITFALL PREVENTION 2.9

Previous Experience with
Integration This section assumes
the reader is familiar with the
techniques of integral calculus.

If you have not yet studied integra-
tion in your calculus course, you
should skip this section or cover

it after you become familiar with
integration.

Definite integral »

FXJ Kinematic Equations Derived from Calculus

The velocity of a particle moving in a straight line can be determined as the deriv-
ative of the position with respect to time. It is also possible to find the position of a
particle if its velocity is known as a function of time. In calculus, the procedure used
to perform this task is referred to either as integration or as finding the antiderivative.

Suppose the v ~t graph for a particle moving along the x axis is as shown in
Figure 2.15. Let us divide the time interval £, — ¢ into many small intervals, each of
duration Atn. From the definition of average velocity, we see that the displacement
of the particle during any small interval, such as the one shaded in Figure 2.15, is
given by Ax = - At , where U,,.avg 18 the average velocity in that interval. There-
fore, the displacement during this small interval is simply the area of the shaded
rectangle in Figure 2.15. The total displacement for the interval 7, — £ is the sum of

the areas of all the rectangles from ¢ to ¢

Ax = E v At
xn,d\g n
n

where the symbol 2 (uppercase Greek sigma) signifies a sum over all terms, that is, over
all values of n. Now, as the intervals are made smaller and smaller, the number of terms
in the sum increases and the sum approaches a value equal to the area under the curve
in the velocity—time graph. Therefore, in the limit n— %, or Az — 0, the displacement is
Ax = A]rlr—l)lo 2 - At (2.18)
" n

The limit of the sum shown in Equation 2.18 is called a definite integral and so

the displacement of the particle can be written as

Ax= J "o dt (2.19)

i
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The area of the shaded rectangle
is equal to the displacement in
the time interval At,.

Uyen, JaNg: e T T T e T S e

At

where v, (#) denotes the velocity at any time ¢. If the explicit functional form of v (1)
is known and the limits are given, the integral can be evaluated.

Kinematic Equations

We now use the defining equations for acceleration and velocity to derive two of
our kinematic equations, Equations 2.13 and 2.16.
The defining equation for acceleration (Eq. 2.10),

dv

X

a. =

*oodt
may be written as dv_ = a_dl or, in terms of an integral (or antiderivative), as

t
] .—v.=J a dt

xf xi
0

For the special case in which the acceleration is constant, a_can be removed from
the integral to give

t
U= V= axJ dt=a(t—0)=ay (2.20)

0

which is Equation 2.13 in the particle under constant acceleration model.
Now let us consider the defining equation for velocity (Eq. 2.5):

dx
R —
*oodt .
We can write this equation as dx = v_dt or in integral form as
t
X=X = J v_di
0

Because v, =v,= U, + a t, this expression becomes

=
I
]
I

! : Y -
! i_J('Uxi'*' at) dt:J v, dt + axJ tdt= v.\-i(l_ 0) + a—*(E— 0)
0

0 0

x,—x.=uv.tl+ %af
X1 X

which is Equation 2.16 in the particle under constant acceleration model.

Figure 2.15 Velocity versus time
for a particle moving along the
xaxis. The total area under the
curve is the total displacement of
the particle.

PITFALL PREVENTION 2.10

Integration is an Area If this dis-
cussion of integration is confusing
to you, just remember that the
integral of a function is simply the
area between the function and
the x axis between the limits of
integration. If the function has a
simple shape, the area can be eas-
ily calculated without integration.
For example, if the function is a
constant, so that its graph is a hor-
izontal line, the area is just that

of the rectangle between the line
and the x axis!
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Particle Under Constant Acceleration. If a particle moves in wy=int %(vx‘_ + vxf) t (2.15)
a straight line with a constant acceleration a, its motion is
described by the kinematic equations: L L.
» Definitions | : i %= %+ ul+ (216) |
‘ Uy =1, +at (2.13)
‘ \ vxf2 =y + 2a,(x,— x)) (2.17) |
When a particle moves along the x The instantaneous velocity of a particle is defined as the limit of the ratio Ax/A¢ as At Uty ‘
| 5 e 5 Lwst : s . v = (2.14) V- — —_— > >
axis from some initial position x; to approaches zero. By definition, this limit equals the derivative of x with respect to ¢, or xavg 92 ’ ° ° = o = 2 =
some final position X, its displace- the time rate of change of the position: a =S S = = —_—

ol

ment is

Ax= X=X (2.1)

The average velocity of a particle
during some time interval is the dis-
placement Ax divided by the time
interval A¢ during which that dis-
placement occurs:

Ax
vx,;\\'g = E (22)
The average speed of a particle is
equal to the ratio of the total dis-
tance it travels to the total time
interval during which it travels that
distance:

(2.3)

_d
T AL

» Concepts and Principles

When an object’s velocity and acceleration are in the
same direction, the object is speeding up. On the other
hand, when the object’s velocity and acceleration are in
opposite directions, the object is slowing down. Remem-
bering that E\, *aisa useful way to identify the direction
of the acceleration by associating it with a force.

Complicated problems are best approached
in an organized manner. Recall and
apply the Conceptualize, Categorize, Analyze,
and Finalize steps of the Analysis Model
Approach to Problem Solving when you

need them.

Particle Under Constant Velocity. If a particle moves in a
straight line with a constant speed v, its constant velocity is

given by
Ax
AR =
L.
and its position is given by
x/.= x.+ vl
< (@] < =)

Ax  dx
v =lim —=— 2.5
X A0 At dt (2.8)
The instantaneous speed of a particle is equal to the magnitude of its instantaneous
velocity.

The average acceleration of a particle is defined as the ratio of the change in its velocity
Av_divided by the time interval Az during which that change occurs:
Ay, Yy Uy
=—— = (2.9)

a =
WAL b

The instantaneous acceleration is equal to the limit of the ratio Av /Atas At approaches
0. By definition, this limit equals the derivative of v with respect to (, or the time rate of
change of the velocity:

Av,  do,
=—= (2.10)

= i —_—=
%= a8 A dt

An object falling freely in the presence of the Earth’s gravity experi-
ences free-fall acceleration directed toward the center of the Earth.
If air resistance is neglected, if the motion occurs near the surface
of the Earth, and if the range of the motion is small compared with
the Earth’s radius, the free-fall acceleration a, = —gis constant over
the range of motion, where gis equal to 9.80 m/s>.

An important aid to problem solving is the use of analysis models. Analysis mod-
els are situations that we have seen in previous problems. Each analysis model has
one or more equations associated with it. When solving a new problem, identify
the analysis model that corresponds to the problem. The model will tell you which
equations to use. The first three analysis models introduced in this chapter are
summarized below.

> Analysis Models for Problem Solving

Particle Under Constant Speed. If a particle moves a dis-
tance d along a curved or straight path with a constant speed,
its constant speed is given by

(2.6) i (2.8)

A~
Y ~
(2.7) / i

v
€
|
\
\
X
&

| Think-Pair-Share

See the Preface for an explanation of the icons used in this problems set.
For additional assessment items for this section, go to ;"¢ WEBASSIGN

1

% ® From Cengage

You are at a carnival playing the “Strike-the-Bell” game, as
shown in Figure TP2.1. The goal is to hit the end of the lever
with a hammer, sending a hard object upward along the fric-
tionless vertical track so as to strike a bell at the top. Show-
ing off your control for the crowd, you hit the lever several
times in a row in such a way that the hard object rises to a
height 2 = 4.50 m and just touches the bell, which makes
a gentle ringing sound. Now, to really impress the crowd,
you swing the hammer with a mighty motion, hit the lever,
and project the object upward with twice the initial speed
of your previous demonstrations. Unbeknownst to you,
on the previous demonstration, the bell came loose and
slipped off to the side, so that, on this demonstration, the
object bypasses the bell and is projected straight up into
the air. What is the total time interval between when the
object begins its upward motion and then later lands on the
ground beside the apparatus?

Stephen Bjorck/Getty Images

Figure TP2.1

2. Your group is at the top of a cliff of height 4 = 75.0 m. At the

bottom of the cliff is a pool of water. You split the group in
two. The first half of the group volunteers a member to drop a

rock from rest so that it falls straight downward and makes a
splash in the water. The second half of the group volunteers
a member to, after some time interval has passed since the
first rock was dropped, throw a second rock straight down-
ward so that both rocks arrive at the water at the same time.
You test the performance by listening for a single splash
made by the rocks simultaneously hitting the water. (a) If the
second rock is thrown 1.00 s after the first rock is released,
with what speed must the second rock be thrown? (b) If the
fastest anyone in your group can throw the rock is 40.0 m/s,
what is the longest time interval that can pass between the
release of the rocks so that a single splash is heard? (c) If
there is no limit as to how fast the rock can be thrown, what
is the longest time interval that can pass between the release
of the rocks so that a single splash is heard?

. Have your partner hold a ruler vertically with the
zero end at the bottom. Place your open finger and thumb
at the zero position. Without warning, your partner should
release the ruler and you should catch it as soon as you see it
moving. From the position of your finger on the ruler, deter-
mine your reaction time. Repeat the experiment a number
of times to estimate the uncertainty in your reaction time.
Have each member of your group catch the ruler and com-
pare your reaction times.

. The Acela is an electric train on the Washing-
ton-New York-Boston run, carrying passengers at speeds
as high as 170 mi/h. A velocity—time graph for the Acela is
shown in Figure TP2.4. (a) Describe the train’s motion in
each successive time interval. (b) Find the train’s peak posi-
tive acceleration in the motion graphed. (c) Find the train’s
displacement in miles between ¢ =0 and =200 s.

v (mi/h)
200

L t(s)
=50 0 50 100 150 200 250 300 350400

Figure TP2.4 Velocity-time graph for the Acela.
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Problems

See the Preface for an explanation of the icons used in this problems sel.
For additional assessment items for this section, go to "¢ WEBASSIGN

4 & From Cengage

SECTION 2.1 Position, Velocity, and Speed

1. The speed of a nerve impulse in the human body is about
[BIO ST/ m/s. If you accidentally stub your toe in the dark, estimate
the time it takes the nerve impulse to travel to your brain.

2. A particle moves according to the equation x = 10¢%, where x
/4 isin meters and (is in seconds. (a) Find the average velocity
for the time interval from 2.00 s to 3.00 s. (b) Find the aver-

age velocity for the time interval from 2.00 to 2.10 s.

3. The position of a pinewood derby car was observed at vari-
ous times; the results are summarized in the following table.
Find the average velocity of the car for (a) the first second,
(b) the last 3 s, and (c) the entire period of observation.

t(s) 0 1.0 2.0 3.0 4.0 5.0
x(@m) O 2.8 9.2 20.7 36.8 57.5

SECTION 2.2 Instantaneous Velocity and Speed

4. An athlete leaves one end of a pool of length L at t = 0
Il and arrives at the other end at time t,. She swims back and
arrives at the starting position at time £,. If she is swimming
initially in the positive x direction, determine her aver-
age velocities symbolically in (a) the first half of the swim,
(b) the second half of the swim, and (c) the round trip.

(d) What is her average speed for the round trip?

5. A position—time graph for a particle moving along the
x axis is shown in Figure P2.5. (a) Find the average velocity
in the time interval ¢t = 1.50 s to 7 = 4.00 s. (b) Determine
the instantaneous velocity at ¢ = 2.00 s by measuring the
slope of the tangent line shown in the graph. (c) At what
value of £is the velocity zero?

x (m)

Figure P2.5

SECTION 2.3 Analysis Model: Particle Under Constant Velocity

6. A car travels along a straight line at a constant speed of
60.0 mi/h for a distance d and then another distance d in
the same direction at another constant speed. The average
velocity for the entire trip is 30.0 mi/h. (a) What is the con-
stant speed with which the car moved during the second dis-
tance d? (b) What If? Suppose the second distance d were
traveled in the opposite direction; you forgot something and
had to return home at the same constant speed as found in
part (a). What is the average velocity for this trip? (c) What is

the average speed for this new trip?

2

A person takes a trip, driving with a constant speed of 89.5

km/h, except for a 22.0-min rest stop. If the person’s aver-

age speed is 77.8 km/h, (a) how much time is spent on the
trip and (b) how far does the person travel?

SECTION 2.5 Acceleration

8. A child rolls a marble on a bent track that is 100 cm long as

shown in Figure P2.8. We use x to represent the position of
the marble along the track. On the horizontal sections from
x=0to x =20 cm and from x = 40 cm to x = 60 cm, the
marble rolls with constant speed. On the sloping sections,
the marble’s speed changes steadily. At the places where
the slope changes, the marble stays on the track and does
not undergo any sudden changes in speed. The child gives
the marble some initial speed at x = 0 and ¢ = 0 and then
watches it roll to x = 90 cm, where it turns around, eventually
returning to x = 0 with the same speed with which the child
released it. Prepare graphs of xversus /4, v_versus 7, and a_ver-
sus ¢, vertically aligned with their time axes identical, to show
the motion of the marble. You will not be able to place num-
bers other than zero on the horizontal axis or on the velocity
or acceleration axes, but show the correct graph shapes.

100 cm

40 cm 60 cm

Figure P2.8

Figure P2.9 shows a graph of »_versus ¢ for the motion of
a motorcyclist as he starts from rest and moves along the
road in a straight line. (a) Find the average acceleration for
the time interval { = 0 to ¢ = 6.00 s. (b) Estimate the time
at which the acceleration has its greatest positive value and
the value of the acceleration at that instant. (¢) When is
the acceleration zero? (d) Estimate the maximum negative
value of the acceleration and the time at which it occurs.

v, (m/s)
10
8
6
4
2
1 1 | | 1 |
ol 9 4 6 8 10 121(8)
Figure P2.9

(a) Use the data in Problem 3 to construct a smooth graph
of position versus time. (b) By constructing tangents to
the x(f) curve, find the instantaneous velocity of the car at
several instants. (c) Plot the instantaneous velocity versus
time and, from this information, determine the average
acceleration of the car. (d) What was the initial velocity of
the car?

11. A particle starts from rest

a, (m/s?)
2

B4 and accelerates as shown
in Figure P2.11. Determine 1L
(a) the particle’s speed at ¢
= 10.0 s and at £ = 20.0 s, — — £ (9)
. 5 10 15 20
and (b) the distance trav- =1L}
eled in the first 20.0 s. —9o|
SECTION 2.6 Motion Diagrams -3
12. Draw motion diagrams for Figure P2.11

(a) an object moving to the
right at constant speed, (b) an object moving to the right
and speeding up at a constant rate, (c) an object moving
to the right and slowing down at a constant rate, (d) an
object moving to the left and speeding up at a constant rate,
and (e) an object moving to the left and slowing down at a
constant rate. (f) How would your drawings change if the
changes in speed were not uniform, that s, if the speed were
not changing at a constant rate?

Each of the strobe photographs (a), (b), and (c) in Figure P2.13
was taken of a single disk moving toward the right, which we
take as the positive direction. Within each photograph the time
interval between images is constant. For each photograph, pre-
pare graphs of x versus ¢, v, versus {, and a_versus f, vertically
aligned with their time axes identical, to show the motion of
the disk. You will not be able to place numbers other than zero
on the axes, but show the correct shapes for the graph lines.

Charles D. Winters

Figure P2.13

SECTION 2.7 Analysis Model: Particle
Under Constant Acceleration

14.

An electron in a cathode-ray tube accelerates uniformly
from 2.00 X 10* m/s to 6.00 X 10° m/s over 1.50 cm.
(a) In what time interval does the electron travel this 1.50 cm?
(b) What is its acceleration?

A parcel of air moving in a straight tube with a constant
acceleration of —4.00 m/s? has a velocity of 13.0 m/s at
10:05:00 a.m. (a) What is its velocity at 10:05:01 a.m.?
(b) At 10:05:04 a.m.? (c) At 10:04:59 a.m.? (d) Describe the
shape of a graph of velocity versus time for this parcel of air.
(e) Argue for or against the following statement: “Knowing

18.

19.

© Cengage

20.

QlC

S | identify the variables and parameters v, v

22.

Problems 49

the single value of an object’s constant acceleration is like
knowing a whole list of values for its velocity.”

In Example 2.7, we investigated a jet landing on an aircraft
carrier. In a later maneuver, the jet comes in for a landing
on solid ground with a speed of 100 m/s, and its acceleration
can have a maximum magnitude of 5.00 m/s? as it comes to
rest. (a) From the instant the jet touches the runway, what
is the minimum time interval needed before it can come to
rest? (b) Can this jet land at a small tropical island airport
where the runway is 0.800 km long? (c) Explain your answer.

An object moving with uniform acceleration has a velocity
of 12.0 cm/s in the positive x direction when its x coordinate
is 3.00 cm. If its x coordinate 2.00 s later is —5.00 c¢m, what
is its acceleration?

Solve Example 2.8 by a graphical method. On the same
graph, plot position versus time for the car and the trooper.
From the intersection of the two curves, read the time at
which the trooper overtakes the car.

A glider of length € moves through a stationary photogate
on an air track. A photogate (Fig. P2.19) is a device that mea-
sures the time interval A¢, during which the glider blocks
a beam of infrared light passing across the photogate. The
ratio v, = €/At,is the average velocity of the glider over this
part of its motion. Suppose the glider moves with constant
acceleration. (a) Argue for or against the idea that v, is equal
to the instantaneous velocity of the glider when it is halfway
through the photogate in space. (b) Argue for or against
the idea that v, is equal to the instantaneous velocity of the
glider when it is halfway through the photogate in time.

e it

' ¥ u

Figure P2.19 Problems 19 and 21.
Why is the following situation impossible? Starting from rest,
a charging rhinoceros moves 50.0 m in a straight line in
10.0 s. Her acceleration is constant during the entire motion,
and her final speed is 8.00 m/s.

. A glider of length 12.4 cm moves on an air track with con-

stant acceleration (Fig P2.19). A time interval of 0.628 s
elapses between the moment when its front end passes a
fixed point ® along the track and the moment when its
back end passes this point. Next, a time interval of 1.39 s
elapses between the moment when the back end of the
glider passes the point ® and the moment when the front
end of the glider passes a second point ® farther down the
track. After that, an additional 0.431 s elapses until the back
end of the glider passes point ®. (a) Find the average speed
of the glider as it passes point @. (b) Find the acceleration
of the glider. (c) Explain how you can compute the accelera-
tion without knowing the distance between points ® and ®.

In the particle under constant acceleration model, we
a, t, and

el

%
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x; — x,. Of the equations in the model, Equations 2.13-2.17,
the first does not involve x, — x, the second and third do
not contain @, the fourth omits v_, and the last leaves out
t. So, to complete the set, there should be an equation not
involving v . Derive it from the others.

At t = 0, one toy car is set rolling on a straight track with
initial position 15.0 cm, initial velocity —3.50 cm/s, and con-
stant acceleration 2.40 cm/s?. At the same moment, another
toy car is set rolling on an adjacent track with initial posi-
tion 10.0 cm, initial velocity +5.50 cm/s, and constant accel-
eration zero. (a) At what time, if any, do the two cars have
equal speeds? (b) What are their speeds at that time? (c) At
what time(s), if any, do the cars pass each other? (d) What
are their locations at that time? (e) Explain the difference
between question (a) and question (c) as clearly as possible.

You are observing the poles along the side of the road as
described in the opening storyline of the chapter. You have
already stopped and measured the distance between adjacent
poles as 40.0 m. You are now driving again and have activated
your smartphone stopwatch. You start the stopwatch at ¢ = 0
as you pass pole #1. At pole #2, the stopwatch reads 10.0 s.
At pole #3, the stopwatch reads 25.0 s. Your friend tells you
that he was pressing the brake and slowing down the car uni-
formly during the entire time interval from pole #1 to pole
#3. (a) What was the acceleration of the car between poles #1
and #3? (b) What was the velocity of the car at pole #1? (c) If
the motion of the car continues as described, what is the
number of the last pole passed before the car comes to rest?

SECTION 2.8 Freely Falling Objects

Note: In all problems in this section, ignore the effects of air
resistance.

25.

26.

Why is the following situation
impossible? Emily challenges
David to catch a $1 bill
as follows. She holds the
bill vertically as shown in
Figure P2.25, with the cen-
ter of the bill between but
not touching David’s index
finger and thumb. Without
warning, Emily releases the
bill. David catches the bill
without moving his hand
downward. David’s reaction time is equal to the average
human reaction time.

Figure P2.25

An attacker at the base of a castle wall 3.65 m high throws a
rock straight up with speed 7.40 m/s from a height of 1.55 m
above the ground. (a) Will the rock reach the top of the
wall? (b) If so, what is its speed at the top? If not, what initial
speed must it have to reach the top? (c) Find the change in
speed of a rock thrown straight down from the top of the
wall at an initial speed of 7.40 m/s and moving between the
same two points. (d) Does the change in speed of the down-
ward-moving rock agree with the magnitude of the speed
change of the rock moving upward between the same eleva-
tions? (e) Explain physically why it does or does not agree.

The height of a helicopter above the ground is given by
h = 3.00¢%, where % is in meters and ¢ is in seconds. At
t=2.00 s, the helicopter releases a small mailbag. How long
after its release does the mailbag reach the ground?

© Cengage

28.

29.

30.
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A ball is thrown upward from the ground with an initial
speed of 25 m/s; at the same instant, another ball is dropped
from a building 15 m high. After how long will the balls be
at the same height above the ground?

A student throws a set of keys vertically upward to her soror-
ity sister, who is in a window 4.00 m above. The second
student catches the keys 1.50 s later. (a) With what initial
velocity were the keys thrown? (b) What was the velocity of
the keys just before they were caught?

At time ¢ = 0, a student throws a set of keys vertically upward
to her sorority sister, who is in a window at distance A above.
The second student catches the keys at time . (a) With what
initial velocity were the keys thrown? (b) What was the veloc-
ity of the keys just before they were caught?

You have been hired by the prosecuting attorney as an expert
witness in a robbery case. The defendant is accused of steal-
ing an expensive and massive diamond ring in its box from
a jewelry store. A witness to the alleged crime testified that
she saw the defendant run from the store, stop next to an
apartment building, and throw the box straight upward to
an accomplice leaning out a fourth-floor window. When cap-
tured, the defendant did not have the stolen box with him
and claimed innocence. When the witness testified in court
about the defendant’s throwing of the box to an accomplice,
the defending attorney argued that it would be impossible to
throw the box upward that high to reach the window in ques-
tion. The bottom of the window is 19.0 m above the sidewalk.
You have set up a demonstration in which the defendant was
asked by the judge to throw a baseball horizontally as fast as
he could and a radar deyvice was used to determine that he
can throw the ball at 20 m/s. (a) What testimony can you pro-
vide about the ability of the defendant to throw the box to the
window in question? (b) What argument might the defense
attorney make about the process used to develop your expert
testimony? What might be your counter argument? Ignore
any effects of air resistance on the box.

SECTION 2.9 Kinematic Equations Derived from Calculus

32.

33.

A student drives a moped v, (m/s)
along a straight road 8

as described by the
velocity—-time graph in
Figure P2.32. Sketch this | L L\_|
graph in the middle of
a sheet of graph paper. —4
(a) Directly above your
graph, sketch a graph of
the position versus time,
aligning the time coor-
dinates of the two graphs. (b) Sketch a graph of the accel-
eration versus time directly below the velocity—time graph,
again aligning the time coordinates. On each graph, show
the numerical values of x and «_for all points of inflec-
tion. (c¢) What is the acceleration at ¢ = 6.00 s? (d) Find
the position (relative to the starting point) at { = 6.00 s.
(e) What is the moped’s final position at ¢ = 9.00 s?

]
10!

-8
Figure P2.32

Automotive engineers refer to the time rate of change of accel-
eration as the “jerk.” Assume an object moves in one dimen-
sion such that its jerk /is constant. (a) Determine expressions
for its acceleration ax(/ﬁ),‘ velocity v (#), and position x(f), given
that its initial acceleration, velocity, and position are a, v,
and x, respectively. (b) Show that (f =a?+2/v.—v,).

X xr X X1

ADDITIONAL PROBLEMS

34.
(S

35.

In Figure 2.11b, the area under the velocity—time graph
and between the vertical axis and time ¢ (vertical dashed
line) represents the displacement. As shown, this area con-
sists of a rectangle and a triangle. (a) Compute their areas.
(b) Explain how the sum of the two areas compares with the
expression on the right-hand side of Equation 2.16.

The froghopper Philaenus spumarius is supposedly the best

EE jumper in the animal kingdom. To start a jump, this insect

36.

38.

39

can accelerate at 4.00 km/s* over a distance of 2.00 mm as it
straightens its specially adapted “jumping legs.” Assume the
acceleration is constant. (a) Find the upward velocity with
which the insect takes off. (b) In what time interval does it
reach this velocity? (c) How high would the insect jump if
air resistance were negligible? The actual height it reaches is
about 70 c¢m, so air resistance must be a noticeable force on
the leaping froghopper.

A woman is reported to have fallen 144 ft from the 17th
floor of a building, landing on a metal ventilator box that
she crushed to a depth of 18.0 in. She suffered only minor
injuries. Ignoring air resistance, calculate (a) the speed of
the woman just before she collided with the ventilator and
(b) her average acceleration while in contact with the box.
(c) Modeling her acceleration as constant, calculate the
time interval it took to crush the box.

At t = 0, one athlete in a race running on a long, straight
track with a constant speed v, is a distance d, behind a sec-
ond athlete running with a constant speed v,. (a) Under
what circumstances is the first athlete able to overtake the
second athlete? (b) Find the time ¢ at which the first athlete
overtakes the second athlete, in terms of d, v, and v,. (c)
At what minimum distance d, from the leading athlete must
the finish line be located so that the trailing athlete can at
least tie for first place? Express (l2 in terms of dl, vy, and U, by
using the result of part (b).

Why is the following situation impossible? A freight train is lum-
bering along at a constant speed of 16.0 m/s. Behind the
freight train on the same track is a passenger train traveling
in the same direction at 40.0 m/s. When the front of the pas-
senger train is 58.5 m from the back of the freight train, the
engineer on the passenger train recognizes the danger and
hits the brakes of his train, causing the train to move with
acceleration —3.00 m/s?. Because of the engineer’s action,
the trains do not collide.

Hannah tests her new sports car by racing with Sam, an
experienced racer. Both start from rest, but Hannah
leaves the starting line 1.00 s after Sam does. Sam moves
with a constant acceleration of 3.50 m/s?, while Hannah
maintains an acceleration of 4.90 m/s%. Find (a) the time at
which Hannah overtakes Sam, (b) the distance she travels
before she catches him, and (c) the speeds of both cars at the
instant Hannah overtakes Sam.

Two objects, A and B, are connected by hinges to a rigid
rod that has a length L. The objects slide along perpendic-
ular guide rails as shown in Figure P2.40. Assume object A
slides to the left with a constant speed v. (a) Find the veloc-
ity v, of object B as a function of the angle 6. (b) Describe v,

41.

Problems 51

relative to v. Is v, always smaller y
than v, larger than v, or the same
as v, or does it have some other 4
relationship? ‘T' B
5
v
<
Al

Lisa rushes down onto a subway y g
platform to find her train already %
departing. She stops and watches
the cars go by. Each car is 8.60 m
long. The first moves past her in
1.50 s and the second in 1.10 s.
Find the constant acceleration of
the train.

[/
Figure P2.40

CHALLENGE PROBLEMS
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Two thin rods are fastened to ®
the inside of a circular ring as ’a
shown in Figure P2.42. One s
rod of length D is vertical, and |
the other of length L makes an
angle 6 with the horizontal. The \
two rods and the ring lie in a

vertical plane. Two small beads L
are free to slide without friction
along the rods. (a) If the two ©
beads are released from rest
simultaneously from the posi-
tions shown, use your intuition
and guess which bead reaches the bottom first. (b) Find an
expression for the time interval required for the red bead to
fall from point @ to point © in terms of gand D. (c) Find an
expression for the time interval required for the blue bead
to slide from point ® to point © in terms of g L, and 6.
(d) Show that the two time intervals found in parts (b) and
(c) are equal. Hint: What is the angle between the chords of
the circle ® ® and ® ©? (e) Do these results surprise you?
Was your intuitive guess in part (a) correct? This problem
was inspired by an article by Thomas B. Greenslade, Jr.,
“Galileo’s Paradox,” Phys. Teach. 46, 294 (May 2008).

Figure P2.42

In a women’s 100-m race, accelerating uniformly, Laura
takes 2.00 s and Healan 3.00 s to attain their maximum
speeds, which they each maintain for the rest of the race.
They cross the finish line simultaneously, both setting a
world record of 10.4 s. (a) What is the acceleration of each
sprinter? (b) What are their respective maximum speeds?
(c) Which sprinter is ahead at the 6.00-s mark, and by how
much? (d) What is the maximum distance by which Healan
is behind Laura, and at what time does that occur?

Review. You are sitting in your car at rest at a traffic light
with a bicyclist at rest next to you in the adjoining bicy-
cle lane. As soon as the traffic light turns green, your car
speeds up from rest to 50.0 mi/h with constant acceleration
9.00 mi/h/s and thereafter moves with a constant speed of
50.0 mi/h. At the same time, the cyclist speeds up from
rest to 20.0 mi/h with constant acceleration 13.0 mi/h/s
and thereafter moves with a constant speed of 20.0 mi/h.
(a) For what time interval after the light turned green is
the bicycle ahead of your car? (b) What is the maximum
distance by which the bicycle leads your car during this
time interval?



